decompose_monotone {gpmap} | R Documentation |
Decompose genotype-phenotype map(s) using monotone regression
Description
Functions for decomposing genotype-phenotype (GP) maps with N
biallelic loci using monotone regression from the isotone
package.
Usage
decompose_monotone(gpmap)
decompose_monotone_single(gpmap)
Arguments
gpmap |
A |
Details
decompose_monotone
works for any gpmap
object (values
is (3^N)xK
matrix of genotypic values)
and calls the internal function decompose_monotone_single
for each column. decompose_monotone_single
takes a
gpmap
object with a single set of genotypic values (K=1
), loops through all 2^N
possible
combinations of plusalleles, calls monotone_regression
and identifies the best fit. The code uses the
foreach
package and will run in parallel if a parallel backend is registered (see
foreach
documentation).
Value
The input gpmap
is returned with two added elements
monoR2 |
The coefficient of determination of the monotone regression |
values.mono |
A matrix of genotypic values for the monotone component of genotype-phenotype map(s) |
Author(s)
Arne B. Gjuvsland <arne.gjuvsland@nmbu.no> and Yunpeng Wang <yunpeng.wng@gmail.com>
References
Leeuw J, Hornik K and Mair P (2009) Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods. Journal of Statistical Software 32(5) [link]
Gjuvsland AB, Wang Y, Plahte E and Omholt SW (2013) Monotonicity is a key feature of genotype-phenotype maps. Front. Genet. 4:216. doi: 10.3389/fgene.2013.00216 [link]
Examples
data(GPmaps)
#Additive GP map is monotone so monoR2=1 and values.mono=values
decompose_monotone(A)
#Pure AxA epistasis map
decompose_monotone(AA)
#two-locus example in Cheverud & Routman (1995)
decompose_monotone(mouseweight)
#decompose four random 3-locus GP maps
set.seed(0)
randomGP <- rnorm(3^2*4)
dim(randomGP) <- c(9,4)
decompose_monotone(generate_gpmap(randomGP))