heatmap.2 {gplots} | R Documentation |
Enhanced Heat Map
Description
A heat map is a false color image (basically
image(t(x))
) with a dendrogram added to the left side
and/or to the top. Typically, reordering of the rows and columns
according to some set of values (row or column means) within the
restrictions imposed by the dendrogram is carried out.
This heatmap provides a number of extensions to the standard R
heatmap
function.
Usage
heatmap.2 (x,
# dendrogram control
Rowv = TRUE,
Colv=if(symm)"Rowv" else TRUE,
distfun = dist,
hclustfun = hclust,
dendrogram = c("both","row","column","none"),
reorderfun = function(d, w) reorder(d, w),
symm = FALSE,
# data scaling
scale = c("none","row", "column"),
na.rm=TRUE,
# image plot
revC = identical(Colv, "Rowv"),
add.expr,
# mapping data to colors
breaks,
symbreaks=any(x < 0, na.rm=TRUE) || scale!="none",
# colors
col="heat.colors",
# block sepration
colsep,
rowsep,
sepcolor="white",
sepwidth=c(0.05,0.05),
# cell labeling
cellnote,
notecex=1.0,
notecol="cyan",
na.color=par("bg"),
# level trace
trace=c("column","row","both","none"),
tracecol="cyan",
hline=median(breaks),
vline=median(breaks),
linecol=tracecol,
# Row/Column Labeling
margins = c(5, 5),
ColSideColors,
RowSideColors,
cexRow = 0.2 + 1/log10(nr),
cexCol = 0.2 + 1/log10(nc),
labRow = NULL,
labCol = NULL,
srtRow = NULL,
srtCol = NULL,
adjRow = c(0,NA),
adjCol = c(NA,0),
offsetRow = 0.5,
offsetCol = 0.5,
colRow = NULL,
colCol = NULL,
# color key + density info
key = TRUE,
keysize = 1.5,
density.info=c("histogram","density","none"),
denscol=tracecol,
symkey = any(x < 0, na.rm=TRUE) || symbreaks,
densadj = 0.25,
key.title = NULL,
key.xlab = NULL,
key.ylab = NULL,
key.xtickfun = NULL,
key.ytickfun = NULL,
key.par=list(),
# plot labels
main = NULL,
xlab = NULL,
ylab = NULL,
# plot layout
lmat = NULL,
lhei = NULL,
lwid = NULL,
# extras
extrafun=NULL,
...
)
Arguments
x |
numeric matrix of the values to be plotted. |
Rowv |
determines if and how the row dendrogram should be
reordered. By default, it is TRUE, which implies dendrogram is
computed and reordered based on row means. If NULL or FALSE, then no
dendrogram is computed and no reordering is done. If a
|
Colv |
determines if and how the column dendrogram should
be reordered. Has the options as the |
distfun |
function used to compute the distance (dissimilarity)
between both rows and columns. Defaults to |
hclustfun |
function used to compute the hierarchical clustering
when |
dendrogram |
character string indicating whether to draw 'none', 'row', 'column' or 'both' dendrograms. Defaults to 'both'. However, if Rowv (or Colv) is FALSE or NULL and dendrogram is 'both', then a warning is issued and Rowv (or Colv) arguments are honoured. |
reorderfun |
|
.
symm |
logical indicating if |
scale |
character indicating if the values should be centered and
scaled in either the row direction or the column direction, or
none. The default is |
na.rm |
logical indicating whether |
revC |
logical indicating if the column order should be
|
add.expr |
expression that will be evaluated after the call to
|
breaks |
(optional) Either a numeric vector indicating the
splitting points for binning |
symbreaks |
Boolean indicating whether breaks should be
made symmetric about 0. Defaults to |
col |
colors used for the image. Defaults to heat colors
( |
colsep , rowsep , sepcolor |
(optional) vector of integers
indicating which columns or rows should be separated from the
preceding columns or rows by a narrow space of color
|
sepwidth |
(optional) Vector of length 2 giving the width
(colsep) or height (rowsep) the separator box drawn by colsep and
rowsep as a function of the width (colsep) or height (rowsep) of a
cell. Defaults to |
cellnote |
(optional) matrix of character strings which will be placed within each color cell, e.g. p-value symbols. |
notecex |
(optional) numeric scaling factor for |
notecol |
(optional) character string specifying the color for
|
na.color |
Color to use for missing value ( |
trace |
character string indicating whether a solid "trace" line should be drawn across 'row's or down 'column's, 'both' or 'none'. The distance of the line from the center of each color-cell is proportional to the size of the measurement. Defaults to 'column'. |
tracecol |
character string giving the color for "trace" line. Defaults to "cyan". |
hline , vline , linecol |
Vector of values within cells where a
horizontal or vertical dotted line should be drawn. The color of
the line is controlled by |
margins |
numeric vector of length 2 containing the margins
(see |
ColSideColors |
(optional) character vector of length
|
RowSideColors |
(optional) character vector of length
|
cexRow , cexCol |
positive numbers, used as |
labRow , labCol |
character vectors with row and column labels to
use; these default to |
srtRow , srtCol |
angle of row/column labels, in degrees from horizontal |
adjRow , adjCol |
2-element vector giving the (left-right, top-bottom) justification of row/column labels (relative to the text orientation). |
offsetRow , offsetCol |
Number of character-width spaces to place between row/column labels and the edge of the plotting region. |
colRow , colCol |
color of row/column labels, either a scalar to set the color of all labels the same, or a vector providing the colors of each label item |
key |
logical indicating whether a color-key should be shown. |
keysize |
numeric value indicating the size of the key |
density.info |
character string indicating whether to superimpose a 'histogram', a 'density' plot, or no plot ('none') on the color-key. |
denscol |
character string giving the color for the density
display specified by |
symkey |
Boolean indicating whether the color key should be
made symmetric about 0. Defaults to |
densadj |
Numeric scaling value for tuning the kernel width when
a density plot is drawn on the color key. (See the |
key.title |
main title of the color key. If set to NA no title will be plotted. |
key.xlab |
x axis label of the color key. If set to NA no label will be plotted. |
key.ylab |
y axis label of the color key. If set to NA no label will be plotted. |
key.xtickfun |
function computing tick location and labels for
the xaxis of the color key. Returns a named list containing
parameters that can be passed to |
key.ytickfun |
function computing tick location and labels for
the y axis of the color key. Returns a named list containing
parameters that can be passed to |
key.par |
graphical parameters for the color key. Named list that
can be passed to |
main , xlab , ylab |
main, x- and y-axis titles; defaults to none. |
lmat , lhei , lwid |
visual layout: position matrix, column height, column width. See below for details |
extrafun |
A function to be called after all other work. See examples. |
... |
additional arguments passed on to |
Details
If either Rowv
or Colv
are dendrograms they are honored
(and not reordered). Otherwise, dendrograms are computed as
dd <- as.dendrogram(hclustfun(distfun(X)))
where X
is
either x
or t(x)
.
If either is a vector (of “weights”) then the appropriate
dendrogram is reordered according to the supplied values subject to
the constraints imposed by the dendrogram, by reorder(dd,
Rowv)
, in the row case.
If either is missing, as by default, then the ordering of the
corresponding dendrogram is by the mean value of the rows/columns,
i.e., in the case of rows, Rowv <- rowMeans(x, na.rm=na.rm)
.
If either is NULL
, no reordering will be done for
the corresponding side.
If scale="row"
(or scale="col"
) the rows (columns) are
scaled to have mean zero and standard deviation one. There is some
empirical evidence from genomic plotting that this is useful.
The default colors range from red to white (heat.colors
) and
are not pretty. Consider using enhancements such as the
RColorBrewer package,
https://cran.r-project.org/package=RColorBrewer
to select better colors.
By default four components will be displayed in the plot. At the top
left is the color key, top right is the column dendrogram, bottom left
is the row dendrogram, bottom right is the image plot. When
RowSideColor or ColSideColor are provided, an additional row or column
is inserted in the appropriate location. This layout can be
overriden by specifiying appropriate values for lmat
,
lwid
, and lhei
. lmat
controls the relative
postition of each element, while lwid
controls the column
width, and lhei
controls the row height. See the help page for
layout
for details on how to use these
arguments.
Value
Invisibly, a list with components
rowInd |
row index permutation vector as returned by
|
colInd |
column index permutation vector. |
call |
the matched call |
rowMeans , rowSDs |
mean and standard deviation of each row: only
present if |
colMeans , colSDs |
mean and standard deviation of each column: only
present if |
carpet |
reordered and scaled 'x' values used generate the main 'carpet' |
rowDendrogram |
row dendrogram, if present |
colDendrogram |
column dendrogram, if present |
breaks |
values used for color break points |
col |
colors used |
vline |
center-line value used for column trace, present only if
|
hline |
center-line value used for row trace, present only if
|
colorTable |
A three-column data frame providing the lower and upper bound and color for each bin |
layout |
A named list containing the values used for
|
Note
The original rows and columns are reordered to match the dendrograms
Rowv
and Colv
(if present).
heatmap.2()
uses layout
to arragent the plot
elements. Consequentially, it can not be used in a multi
column/row layout using layout(...)
,
par(mfrow=...)
or (mfcol=...)
.
Author(s)
Andy Liaw, original; R. Gentleman, M. Maechler, W. Huber, G. Warnes, revisions.
See Also
Examples
data(mtcars)
x <- as.matrix(mtcars)
rc <- rainbow(nrow(x), start=0, end=.3)
cc <- rainbow(ncol(x), start=0, end=.3)
##
## demonstrate the effect of row and column dendrogram options
##
heatmap.2(x) ## default - dendrogram plotted and reordering done.
heatmap.2(x, dendrogram="none") ## no dendrogram plotted, but reordering done.
heatmap.2(x, dendrogram="row") ## row dendrogram plotted and row reordering done.
heatmap.2(x, dendrogram="col") ## col dendrogram plotted and col reordering done.
heatmap.2(x, keysize=2) ## default - dendrogram plotted and reordering done.
heatmap.2(x, Rowv=FALSE, dendrogram="both") ## generates a warning!
heatmap.2(x, Rowv=NULL, dendrogram="both") ## generates a warning!
heatmap.2(x, Colv=FALSE, dendrogram="both") ## generates a warning!
## Reorder dendrogram by branch means rather than sums
heatmap.2(x, reorderfun=function(d, w) reorder(d, w, agglo.FUN = mean) )
## plot a sub-cluster using the same color coding as for the full heatmap
full <- heatmap.2(x)
heatmap.2(x, Colv=full$colDendrogram[[2]], breaks=full$breaks) # column subset
heatmap.2(x, Rowv=full$rowDendrogram[[1]], breaks=full$breaks) # row subset
heatmap.2(x, Colv=full$colDendrogram[[2]],
Rowv=full$rowDendrogram[[1]], breaks=full$breaks) # both
## Show effect of row and column label rotation
heatmap.2(x, srtCol=NULL)
heatmap.2(x, srtCol=0, adjCol = c(0.5,1) )
heatmap.2(x, srtCol=45, adjCol = c(1,1) )
heatmap.2(x, srtCol=135, adjCol = c(1,0) )
heatmap.2(x, srtCol=180, adjCol = c(0.5,0) )
heatmap.2(x, srtCol=225, adjCol = c(0,0) ) ## not very useful
heatmap.2(x, srtCol=270, adjCol = c(0,0.5) )
heatmap.2(x, srtCol=315, adjCol = c(0,1) )
heatmap.2(x, srtCol=360, adjCol = c(0.5,1) )
heatmap.2(x, srtRow=45, adjRow=c(0, 1) )
heatmap.2(x, srtRow=45, adjRow=c(0, 1), srtCol=45, adjCol=c(1,1) )
heatmap.2(x, srtRow=45, adjRow=c(0, 1), srtCol=270, adjCol=c(0,0.5) )
## Show effect of offsetRow/offsetCol (only works when srtRow/srtCol is
## not also present)
heatmap.2(x, offsetRow=0, offsetCol=0)
heatmap.2(x, offsetRow=1, offsetCol=1)
heatmap.2(x, offsetRow=2, offsetCol=2)
heatmap.2(x, offsetRow=-1, offsetCol=-1)
heatmap.2(x, srtRow=0, srtCol=90, offsetRow=0, offsetCol=0)
heatmap.2(x, srtRow=0, srtCol=90, offsetRow=1, offsetCol=1)
heatmap.2(x, srtRow=0, srtCol=90, offsetRow=2, offsetCol=2)
heatmap.2(x, srtRow=0, srtCol=90, offsetRow=-1, offsetCol=-1)
## Show how to use 'extrafun' to replace the 'key' with a scatterplot
lmat <- rbind( c(5,3,4), c(2,1,4) )
lhei <- c(1.5, 4)
lwid <- c(1.5, 4, 0.75)
myplot <- function() {
oldpar <- par("mar")
par(mar=c(5.1, 4.1, 0.5, 0.5))
plot(mpg ~ hp, data=x)
}
heatmap.2(x, lmat=lmat, lhei=lhei, lwid=lwid, key=FALSE, extrafun=myplot)
## show how to customize the color key
heatmap.2(x,
key.title=NA, # no title
key.xlab=NA, # no xlab
key.par=list(mgp=c(1.5, 0.5, 0),
mar=c(2.5, 2.5, 1, 0)),
key.xtickfun=function() {
breaks <- parent.frame()$breaks
return(list(
at=parent.frame()$scale01(c(breaks[1],
breaks[length(breaks)])),
labels=c(as.character(breaks[1]),
as.character(breaks[length(breaks)]))
))
})
heatmap.2(x,
breaks=256,
key.title=NA,
key.xlab=NA,
key.par=list(mgp=c(1.5, 0.5, 0),
mar=c(1, 2.5, 1, 0)),
key.xtickfun=function() {
cex <- par("cex")*par("cex.axis")
side <- 1
line <- 0
col <- par("col.axis")
font <- par("font.axis")
mtext("low", side=side, at=0, adj=0,
line=line, cex=cex, col=col, font=font)
mtext("high", side=side, at=1, adj=1,
line=line, cex=cex, col=col, font=font)
return(list(labels=FALSE, tick=FALSE))
})
##
## Show effect of z-score scaling within columns, blue-red color scale
##
hv <- heatmap.2(x, col=bluered, scale="column", tracecol="#303030")
###
## Look at the return values
###
names(hv)
## Show the mapping of z-score values to color bins
hv$colorTable
## Extract the range associated with white
hv$colorTable[hv$colorTable[,"color"]=="#FFFFFF",]
## Determine the original data values that map to white
whiteBin <- unlist(hv$colorTable[hv$colorTable[,"color"]=="#FFFFFF",1:2])
rbind(whiteBin[1] * hv$colSDs + hv$colMeans,
whiteBin[2] * hv$colSDs + hv$colMeans )
##
## A more decorative heatmap, with z-score scaling along columns
##
hv <- heatmap.2(x, col=cm.colors(255), scale="column",
RowSideColors=rc, ColSideColors=cc, margin=c(5, 10),
xlab="specification variables", ylab= "Car Models",
main="heatmap(<Mtcars data>, ..., scale=\"column\")",
tracecol="green", density="density")
## Note that the breakpoints are now symmetric about 0
## Color the labels to match RowSideColors and ColSideColors
hv <- heatmap.2(x, col=cm.colors(255), scale="column",
RowSideColors=rc, ColSideColors=cc, margin=c(5, 10),
xlab="specification variables", ylab= "Car Models",
main="heatmap(<Mtcars data>, ..., scale=\"column\")",
tracecol="green", density="density", colRow=rc, colCol=cc,
srtCol=45, adjCol=c(0.5,1))
data(attitude)
round(Ca <- cor(attitude), 2)
symnum(Ca) # simple graphic
# with reorder
heatmap.2(Ca, symm=TRUE, margin=c(6, 6), trace="none" )
# without reorder
heatmap.2(Ca, Rowv=FALSE, symm=TRUE, margin=c(6, 6), trace="none" )
## Place the color key below the image plot
heatmap.2(x, lmat=rbind( c(0, 3), c(2,1), c(0,4) ), lhei=c(1.5, 4, 2 ) )
## Place the color key to the top right of the image plot
heatmap.2(x, lmat=rbind( c(0, 3, 4), c(2,1,0 ) ), lwid=c(1.5, 4, 2 ) )
## For variable clustering, rather use distance based on cor():
data(USJudgeRatings)
symnum( cU <- cor(USJudgeRatings) )
hU <- heatmap.2(cU, Rowv=FALSE, symm=TRUE, col=topo.colors(16),
distfun=function(c) as.dist(1 - c), trace="none")
## The Correlation matrix with same reordering:
hM <- format(round(cU, 2))
hM
# now with the correlation matrix on the plot itself
heatmap.2(cU, Rowv=FALSE, symm=TRUE, col=rev(heat.colors(16)),
distfun=function(c) as.dist(1 - c), trace="none",
cellnote=hM)
## genechip data examples
## Not run:
library(affy)
data(SpikeIn)
pms <- SpikeIn@pm
# just the data, scaled across rows
heatmap.2(pms, col=rev(heat.colors(16)), main="SpikeIn@pm",
xlab="Relative Concentration", ylab="Probeset",
scale="row")
# fold change vs "12.50" sample
data <- pms / pms[, "12.50"]
data <- ifelse(data>1, data, -1/data)
heatmap.2(data, breaks=16, col=redgreen, tracecol="blue",
main="SpikeIn@pm Fold Changes\nrelative to 12.50 sample",
xlab="Relative Concentration", ylab="Probeset")
## End(Not run)