compute_lower_bound_1tree {gor} | R Documentation |
Computing the 1-tree lower bound for a TSP instance
Description
It computes the 1-tree lower bound for an optimum tour for a TSP instance.
Usage
compute_lower_bound_1tree(d, n, degree = FALSE)
Arguments
d |
Distance matrix. |
n |
Number of vertices of the TSP complete graph. |
degree |
Boolean: Should the routine return the degree seguence of the internal minimum spanning tree? Defaults to FALSE. |
Details
It computes the 1-tree lower bound for an optimum tour for a TSP instance from vertex 1. Internally, it creates the graph Kn-v1 and invokes mst from package igraph to compute the minimum weight spanning tree. If optional argument "degree" is TRUE, it returns the degree seguence of this internal minimum spanning tree, which is very convenient when embedding this routine in the Held-Karp lower bound estimation routine.
Value
The 1-tree lower bound – A scalar if the optional argument "degree" is FALSE. Otherwise, a list with the previous 1-tree lower bound in the $bound component and the degree sequence of the internal minimum spanning tree in the $degree component.
Author(s)
Cesar Asensio
See Also
improve_tour_2opt tour improving using 2-opt, improve_tour_3opt tour improving using 3-opt, compute_lower_bound_HK for Held-Karp lower bound estimates.
Examples
m <- 10 # Generate some points in the plane
z <- cbind(c(rep(0,m), rep(2,m), rep(5,m), rep(7,m)), rep(seq(0,m-1),4))
n <- nrow(z)
d <- compute_distance_matrix(z)
b <- build_tour_2tree(d, n)
b$distance # Distance 57.868
bi <- improve_tour_2opt(d, n, b$tour)
bi$distance # Distance 48 (optimum)
compute_lower_bound_1tree(d,n) # 45
## Random points
set.seed(1)
n <- 25
z <- cbind(runif(n,min=1,max=10),runif(n,min=1,max=10))
d <- compute_distance_matrix(z)
compute_lower_bound_1tree(d,n) # 31.4477
bn <- build_tour_nn_best(d,n)
b3 <- improve_tour_3opt(d,n,bn$tour)
b3$distance # 35.081