pairwise_env_int_CC.calc {gnonadd} | R Documentation |
Pairwise environmental interaction effects for a case control variable
Description
Given a set of variants and environmental traits, and a single case control variable, this function calculates the interaction effect of all possible variant-environmental pairs
Usage
pairwise_env_int_CC.calc(
cc,
g,
env,
yob = rep(-1, length(cc)),
sex = rep(-1, length(cc)),
round_imputed = FALSE,
dominance_term = FALSE,
square_env = FALSE,
covariates = as.data.frame(matrix(0, nrow = 0, ncol = 0)),
variant_names = paste(rep("variant", ncol(g)), as.character(1:ncol(g)), sep = "_"),
env_names = paste(rep("env", ncol(env)), as.character(1:ncol(env)), sep = "_")
)
Arguments
cc |
A numeric vector |
g |
A matrix, where each colomn represents a variant |
env |
A matrix, where each row represents an environmental variable |
yob |
A numerical vector containing year of birth. If some are unknown they should be marked as -1 |
sex |
A numerical vector containing sex, coded 0 for males, 1 for females and -1 for unknown |
round_imputed |
A boolian variable determining whether imputed genotype values should be rounded to the nearest integer in the analysis. |
dominance_term |
A boolian variable determining whether a dominance term for the variant should be included as a covariates in the analysis |
square_env |
A boolian variable determining whether the square of the environmental trait should be included as a covariate in the analysis |
covariates |
A dataframe containing any other covariates that should be used; one column per covariate |
variant_names |
A list of the names of the variants |
env_names |
A list of the names of the environmental variables |
Value
A dataframe with all possible variant-environmental pairs and their estimated interaction effect
Examples
N_run <- 25000
g_vec <- matrix(0, nrow = N_run, ncol = 3)
freqs <- runif(ncol(g_vec), min = 0, max = 1)
env_vec <- matrix(0, nrow = N_run, ncol = 3)
for(i in 1:ncol(g_vec)){
g_vec[, i] <- rbinom(N_run, 2, freqs[i])
}
for( i in 1:ncol(env_vec)){
env_vec[, i] <- round(runif(N_run,min=0,max=6))
}
cc_vec <- rbinom(N_run,1,0.1 * (1.05 ^ g_vec[, 1]) *
(1.06 ^ env_vec[,1]) * (0.95 ^ g_vec[, 2]) *
(1.1^(g_vec[, 1] * env_vec[, 1])))
res <- pairwise_env_int_CC.calc(cc_vec, g_vec, env_vec)