alpha.multi.est {gnonadd} | R Documentation |
Variance parameters
Description
This function jointly estimates the variance effect of a set of (continuous) variables on a qt trait. More precisely. It finds the maximum likelyhood estimators.
Usage
alpha.multi.est(
qt,
x,
iter_num = 50,
eps_param = 1e-10,
initial_guess = rep(0, ncol(x))
)
Arguments
qt |
A numeric vector. |
x |
A numeric matrix, each column represents a covariate. |
iter_num |
An integer. Represents the number of iterations performed in the Gauss-Newton algorithm |
eps_param |
A number. The Gauss-Newton algorithm terminates if the incriment change of all variance estimates is smaller than this number. |
initial_guess |
A vector of length ncol(x). Represents the initial guess of parameters for the Gauss-Newton algorithm. |
Value
A vector with a variance estimate for each variable.
Examples
n_val <- 50000
x <- matrix(0,nrow = n_val, ncol = 4)
for(i in 1:4) {
x[, i] <- rnorm(n_val)
}
var_vec <- exp(0.2 * x[, 1] - 0.3 * x[, 4])
qt_vec <- rnorm(n_val, 0, sqrt(var_vec))
res <- alpha.multi.est(qt_vec, x)
[Package gnonadd version 1.0.2 Index]