glmtrans {glmtrans} | R Documentation |
Fit a transfer learning generalized linear model (GLM) with elasticnet regularization.
Description
Fit a transfer learning generalized linear model through elastic net regularization with target data set and multiple source data sets. It also implements a transferable source detection algorithm, which helps avoid negative transfer in practice. Currently can deal with Gaussian, logistic and Poisson models.
Usage
glmtrans(
target,
source = NULL,
family = c("gaussian", "binomial", "poisson"),
transfer.source.id = "auto",
alpha = 1,
standardize = TRUE,
intercept = TRUE,
nfolds = 10,
cores = 1,
valid.proportion = NULL,
valid.nfolds = 3,
lambda = c(transfer = "lambda.1se", debias = "lambda.min", detection = "lambda.1se"),
detection.info = TRUE,
target.weights = NULL,
source.weights = NULL,
C0 = 2,
...
)
Arguments
target |
target data. Should be a list with elements x and y, where x indicates a predictor matrix with each row/column as a(n) observation/variable, and y indicates the response vector. |
source |
source data. Should be a list with some sublists, where each of the sublist is a source data set, having elements x and y with the same meaning as in target data. |
family |
response type. Can be "gaussian", "binomial" or "poisson". Default = "gaussian".
|
transfer.source.id |
transferable source indices. Can be either a subset of
|
alpha |
the elasticnet mixing parameter, with
. |
standardize |
the logical flag for x variable standardization, prior to fitting the model sequence. The coefficients are always returned on the original scale. Default is |
intercept |
the logical indicator of whether the intercept should be fitted or not. Default = |
nfolds |
the number of folds. Used in the cross-validation for GLM elastic net fitting procedure. Default = 10. Smallest value allowable is |
cores |
the number of cores used for parallel computing. Default = 1. |
valid.proportion |
the proportion of target data to be used as validation data when detecting transferable sources. Useful only when |
valid.nfolds |
the number of folds used in cross-validation procedure when detecting transferable sources. Useful only when |
lambda |
a vector indicating the choice of lambdas in transferring, debiasing and detection steps. Should be a vector with names "transfer", "debias", and "detection", each component of which can be either "lambda.min" or "lambda.1se". Component
|
detection.info |
the logistic flag indicating whether to print detection information or not. Useful only when |
target.weights |
weight vector for each target instance. Should be a vector with the same length of target response. Default = |
source.weights |
a list of weight vectors for the instances from each source. Should be a list with the same length of the number of sources. Default = |
C0 |
the constant used in the transferable source detection algorithm. See Algorithm 2 in Tian, Y. and Feng, Y., 2021. Default = 2. |
... |
additional arguments. |
Value
An object with S3 class "glmtrans"
.
beta |
the estimated coefficient vector. |
family |
the response type. |
transfer.source.id |
the transferable souce index. If in the input, |
fitting.list |
a list of other parameters of the fitted model. |
w_athe estimator obtained from the transferring step.
delta_athe estimator obtained from the debiasing step.
target.valid.lossthe validation (or cross-validation) loss on target data. Only available when
transfer.source.id = "auto"
.source.lossthe loss on each source data. Only available when
transfer.source.id = "auto"
.thresholdthe threshold to determine transferability. Only available when
transfer.source.id = "auto"
.
References
Tian, Y. and Feng, Y., 2021. Transfer Learning under High-dimensional Generalized Linear Models. arXiv preprint arXiv:2105.14328.
Li, S., Cai, T.T. and Li, H., 2020. Transfer learning for high-dimensional linear regression: Prediction, estimation, and minimax optimality. arXiv preprint arXiv:2006.10593.
Friedman, J., Hastie, T. and Tibshirani, R., 2010. Regularization paths for generalized linear models via coordinate descent. Journal of statistical software, 33(1), p.1.
Zou, H. and Hastie, T., 2005. Regularization and variable selection via the elastic net. Journal of the royal statistical society: series B (statistical methodology), 67(2), pp.301-320.
Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), pp.267-288.
See Also
predict.glmtrans
, source_detection
, models
, plot.glmtrans
, cv.glmnet
, glmnet
.
Examples
set.seed(0, kind = "L'Ecuyer-CMRG")
# fit a linear regression model
D.training <- models("gaussian", type = "all", n.target = 100, K = 2, p = 500)
D.test <- models("gaussian", type = "target", n.target = 100, p = 500)
fit.gaussian <- glmtrans(D.training$target, D.training$source)
y.pred.glmtrans <- predict(fit.gaussian, D.test$target$x)
# compare the test MSE with classical Lasso fitted on target data
library(glmnet)
fit.lasso <- cv.glmnet(x = D.training$target$x, y = D.training$target$y)
y.pred.lasso <- predict(fit.lasso, D.test$target$x)
mean((y.pred.glmtrans - D.test$target$y)^2)
mean((y.pred.lasso - D.test$target$y)^2)
# fit a logistic regression model
D.training <- models("binomial", type = "all", n.target = 100, K = 2, p = 500)
D.test <- models("binomial", type = "target", n.target = 100, p = 500)
fit.binomial <- glmtrans(D.training$target, D.training$source, family = "binomial")
y.pred.glmtrans <- predict(fit.binomial, D.test$target$x, type = "class")
# compare the test error with classical Lasso fitted on target data
library(glmnet)
fit.lasso <- cv.glmnet(x = D.training$target$x, y = D.training$target$y, family = "binomial")
y.pred.lasso <- as.numeric(predict(fit.lasso, D.test$target$x, type = "class"))
mean(y.pred.glmtrans != D.test$target$y)
mean(y.pred.lasso != D.test$target$y)
# fit a Poisson regression model
D.training <- models("poisson", type = "all", n.target = 100, K = 2, p = 500)
D.test <- models("poisson", type = "target", n.target = 100, p = 500)
fit.poisson <- glmtrans(D.training$target, D.training$source, family = "poisson")
y.pred.glmtrans <- predict(fit.poisson, D.test$target$x, type = "response")
# compare the test MSE with classical Lasso fitted on target data
fit.lasso <- cv.glmnet(x = D.training$target$x, y = D.training$target$y, family = "poisson")
y.pred.lasso <- as.numeric(predict(fit.lasso, D.test$target$x, type = "response"))
mean((y.pred.glmtrans - D.test$target$y)^2)
mean((y.pred.lasso - D.test$target$y)^2)