| residuals2 {glmtoolbox} | R Documentation |
Residuals for Linear and Generalized Linear Models
Description
Computes residuals for a fitted linear or generalized linear model.
Usage
residuals2(object, type, standardized = FALSE, plot.it = FALSE, identify, ...)
Arguments
object |
a object of the class lm or glm. |
type |
an (optional) character string giving the type of residuals which should be returned. The available options for LMs are: (1) externally studentized ("external"); (2) internally studentized ("internal") (default). The available options for GLMs are: (1) "pearson"; (2) "deviance" (default); (3) "quantile". |
standardized |
an (optional) logical switch indicating if the residuals should be standardized by dividing by the square root of |
plot.it |
an (optional) logical switch indicating if a plot of the residuals versus the fitted values is required. As default, |
identify |
an (optional) integer value indicating the number of individuals to identify on the plot of residuals. This is only appropriate when |
... |
further arguments passed to or from other methods |
Value
A vector with the observed residuals type type.
References
Atkinson A.C. (1985) Plots, Transformations and Regression. Oxford University Press, Oxford.
Davison A.C., Gigli A. (1989) Deviance Residuals and Normal Scores Plots. Biometrika 76, 211-221.
Dunn P.K., Smyth G.K. (1996) Randomized Quantile Residuals. Journal of Computational and Graphical Statistics 5, 236-244.
Pierce D.A., Schafer D.W. (1986) Residuals in Generalized Linear Models. Journal of the American Statistical Association 81, 977-986.
Examples
###### Example 1: Species richness in plots
data(richness)
fit1 <- lm(Species ~ Biomass + pH, data=richness)
residuals2(fit1, type="external", plot.it=TRUE, col="red", pch=20, col.lab="blue",
col.axis="blue", col.main="black", family="mono", cex=0.8)
###### Example 2: Lesions of Aucuba mosaic virus
data(aucuba)
fit2 <- glm(lesions ~ time, family=poisson, data=aucuba)
residuals2(fit2, type="quantile", plot.it=TRUE, col="red", pch=20, col.lab="blue",
col.axis="blue",col.main="black",family="mono",cex=0.8)