residuals.glmgee {glmtoolbox} | R Documentation |
Residuals for Generalized Estimating Equations
Description
Calculates residuals for a fitted generalized estimating equation.
Usage
## S3 method for class 'glmgee'
residuals(
object,
...,
type = c("mahalanobis", "pearson", "deviance"),
plot.it = FALSE,
identify
)
Arguments
object |
a object of the class glmgee. |
... |
further arguments passed to or from other methods |
type |
an (optional) character string giving the type of residuals which should be returned. The available options are: (1) "pearson"; (2) "deviance"; (3) the distance between the observed response vector and the fitted mean vector using a metric based on the product between the cluster size and fitted variance-covariance matrix ("mahalanobis"). As default, |
plot.it |
an (optional) logical switch indicating if a plot of the residuals is required. As default, |
identify |
an (optional) integer value indicating the number of individuals/clusters to identify on the plot of residuals. This is only appropriate when |
Value
A vector with the observed residuals type type
.
Examples
###### Example 1: Effect of ozone-enriched atmosphere on growth of sitka spruces
data(spruces)
mod1 <- size ~ poly(days,4) + treat
fit1 <- glmgee(mod1, id=tree, family=Gamma(log), data=spruces, corstr="AR-M-dependent")
### Plot to assess the adequacy of the chosen variance function
residuals(fit1, type="deviance", plot.it=TRUE, col="red", pch=20, col.lab="blue",
col.axis="blue", col.main="black", family="mono", cex=0.8)
### Plot to identify trees suspicious to be outliers
residuals(fit1, type="mahalanobis", plot.it=TRUE, col="red", pch=20, col.lab="blue",
col.axis="blue", col.main="black", family="mono", cex=0.8)
###### Example 2: Treatment for severe postnatal depression
data(depression)
mod2 <- depressd ~ visit + group
fit2 <- glmgee(mod2, id=subj, family=binomial(logit), corstr="AR-M-dependent", data=depression)
### Plot to identify women suspicious to be outliers
residuals(fit2, type="mahalanobis", plot.it=TRUE, col="red", pch=20, col.lab="blue",
col.axis="blue", col.main="black", family="mono", cex=0.8)
###### Example 3: Treatment for severe postnatal depression (2)
mod3 <- dep ~ visit*group
fit3 <- glmgee(mod3, id=subj, family=gaussian(identity), corstr="AR-M-dependent", data=depression)
### Plot to assess the adequacy of the chosen variance function
residuals(fit3, type="pearson", plot.it=TRUE, col="red", pch=20, col.lab="blue",
col.axis="blue", col.main="black", family="mono", cex=0.8)
### Plot to identify women suspicious to be outliers
residuals(fit3, type="mahalanobis", plot.it=TRUE, col="red", pch=20, col.lab="blue",
col.axis="blue", col.main="black", family="mono", cex=0.8)