adjR2.gnm {glmtoolbox} | R Documentation |
Adjusted R-squared in Generalized Nonlinear Models
Description
Computes the adjusted deviance-based R-squared in generalized nonlinear models.
Usage
## S3 method for class 'gnm'
adjR2(..., digits = max(3, getOption("digits") - 2), verbose = TRUE)
Arguments
... |
one or several objects of the class gnm, which are obtained from the fit of generalized nonlinear models. |
digits |
an (optional) integer value indicating the number of decimal places to be used. As default, |
verbose |
an (optional) logical indicating if should the report of results be printed. As default, |
Details
The deviance-based R-squared is computed as R^2=1 - Deviance/Null.Deviance
. Then,
the adjusted deviance-based R-squared is computed as
1 - \frac{n-1}{n-p}(1-R^2)
, where p
is the
number of parameters in the "linear" predictor and n
is the sample size.
Value
a matrix with the following columns
Deviance | value of the residual deviance, |
R-squared | value of the deviance-based R-squared, |
df | number of parameters in the "linear" predictor, |
adj.R-squared | value of the adjusted deviance-based R-squared, |
Examples
###### Example 1: The effects of fertilizers on coastal Bermuda grass
data(Grass)
fit1 <- gnm(Yield ~ b0 + b1/(Nitrogen + a1) + b2/(Phosphorus + a2) + b3/(Potassium + a3),
family=gaussian(inverse), start=c(b0=0.1,b1=13,b2=1,b3=1,a1=45,a2=15,a3=30), data=Grass)
fit2 <- update(fit1, family=Gamma(inverse))
adjR2(fit1,fit2)
###### Example 2: Developmental rate of Drosophila melanogaster
data(Drosophila)
fit1 <- gnm(Duration ~ b0 + b1*Temp + b2/(Temp-a), family=Gamma(log),
start=c(b0=3,b1=-0.25,b2=-210,a=55), weights=Size, data=Drosophila)
fit2 <- update(fit1, family=inverse.gaussian(log))
adjR2(fit1,fit2)
###### Example 3: Radioimmunological Assay of Cortisol
data(Cortisol)
fit1 <- gnm(Y ~ b0 + (b1-b0)/(1 + exp(b2+ b3*lDose))^b4, family=Gamma(identity),
start=c(b0=130,b1=2800,b2=3,b3=3,b4=0.5), data=Cortisol)
fit2 <- update(fit1, family=gaussian(identity))
adjR2(fit1,fit2)
###### Example 4: Age and Eye Lens Weight of Rabbits in Australia
data(rabbits)
fit1 <- gnm(wlens ~ b1 - b2/(age + b3), family=Gamma(log),
start=c(b1=5.5,b2=130,b3=35), data=rabbits)
fit2 <- update(fit1, family=gaussian(log))
adjR2(fit1,fit2)
[Package glmtoolbox version 0.1.12 Index]