SGPC {glmtoolbox} | R Documentation |
SGPC for Generalized Estimating Equations
Description
Computes the Schwarz-type penalized Gaussian pseudo-likelihood criterion (SGPC) for one or more objects of the class glmgee.
Usage
SGPC(..., verbose = TRUE, digits = max(3, getOption("digits") - 2))
Arguments
... |
one or several objects of the class glmgee. |
verbose |
an (optional) logical switch indicating if should the report of results be printed. As default, |
digits |
an (optional) integer indicating the number of digits to print. As default, |
Value
A data.frame
with the values of the gaussian pseudo-likelihood, the number of parameters in the linear predictor plus the number of parameters in the correlation matrix, and the value of SGPC for each glmgee object in the input.
References
Carey V.J., Wang Y.-G. (2011) Working covariance model selection for generalized estimating equations. Statistics in Medicine 30:3117-3124.
Zhu X., Zhu Z. (2013) Comparison of Criteria to Select Working Correlation Matrix in Generalized Estimating Equations. Chinese Journal of Applied Probability and Statistics 29:515-530.
Fu L., Hao Y., Wang Y.-G. (2018) Working correlation structure selection in generalized estimating equations. Computational Statistics 33:983-996.
See Also
Examples
###### Example 1: Effect of ozone-enriched atmosphere on growth of sitka spruces
data(spruces)
mod1 <- size ~ poly(days,4) + treat
fit1 <- glmgee(mod1, id=tree, family=Gamma(log), data=spruces)
fit2 <- update(fit1, corstr="AR-M-dependent")
fit3 <- update(fit1, corstr="Stationary-M-dependent(2)")
fit4 <- update(fit1, corstr="Exchangeable")
SGPC(fit1, fit2, fit3, fit4)
###### Example 2: Treatment for severe postnatal depression
data(depression)
mod2 <- depressd ~ visit + group
fit1 <- glmgee(mod2, id=subj, family=binomial(logit), data=depression)
fit2 <- update(fit1, corstr="AR-M-dependent")
fit3 <- update(fit1, corstr="Stationary-M-dependent(2)")
fit4 <- update(fit1, corstr="Exchangeable")
SGPC(fit1, fit2, fit3, fit4)
###### Example 3: Treatment for severe postnatal depression (2)
mod3 <- dep ~ visit*group
fit1 <- glmgee(mod3, id=subj, family=gaussian(identity), data=depression)
fit2 <- update(fit1, corstr="AR-M-dependent")
fit3 <- update(fit1, corstr="Exchangeable")
SGPC(fit1, fit2, fit3)