nbinom2 {glmmTMB} | R Documentation |
Family functions for glmmTMB
Description
Family functions for glmmTMB
Usage
nbinom2(link = "log")
nbinom1(link = "log")
compois(link = "log")
truncated_compois(link = "log")
genpois(link = "log")
truncated_genpois(link = "log")
truncated_poisson(link = "log")
truncated_nbinom2(link = "log")
truncated_nbinom1(link = "log")
beta_family(link = "logit")
betabinomial(link = "logit")
tweedie(link = "log")
lognormal(link = "log")
ziGamma(link = "inverse")
t_family(link = "identity")
ordbeta(link = "logit")
Arguments
link |
(character) link function for the conditional mean ("log", "logit", "probit", "inverse", "cloglog", "identity", or "sqrt") |
Details
If specified, the dispersion model uses a log link. Denoting the variance as V
, the dispersion parameter
as \phi=\exp(\eta)
(where \eta
is the linear predictor from the dispersion model),
and the predicted mean as \mu
:
- gaussian
(from base R): constant
V=\phi^2
- Gamma
(from base R) phi is the shape parameter.
V=\mu\phi
- ziGamma
a modified version of
Gamma
that skips checks for zero values, allowing it to be used to fit hurdle-Gamma models- nbinom2
Negative binomial distribution: quadratic parameterization (Hardin & Hilbe 2007).
V=\mu(1+\mu/\phi) = \mu+\mu^2/\phi
.- nbinom1
Negative binomial distribution: linear parameterization (Hardin & Hilbe 2007).
V=\mu(1+\phi)
. Note that thephi
parameter has opposite meanings in thenbinom1
andnbinom2
families. Innbinom1
overdispersion increases with increasingphi
(the Poisson limit isphi=0
); innbinom2
overdispersion decreases with increasingphi
(the Poisson limit is reached asphi
goes to infinity).- truncated_nbinom2
Zero-truncated version of nbinom2: variance expression from Shonkwiler 2016. Simulation code (for this and the other truncated count distributions) is taken from C. Geyer's functions in the
aster
package; the algorithms are described in this vignette.- compois
Conway-Maxwell Poisson distribution: parameterized with the exact mean (Huang 2017), which differs from the parameterization used in the COMPoissonReg package (Sellers & Shmueli 2010, Sellers & Lotze 2015).
V=\mu\phi
.- genpois
Generalized Poisson distribution (Consul & Famoye 1992).
V=\mu\exp(\eta)
. (Note that Consul & Famoye (1992) define\phi
differently.) Our implementation is taken from theHMMpa
package, based on Joe and Zhu (2005) and implemented by Vitali Witowski.- beta
Beta distribution: parameterization of Ferrari and Cribari-Neto (2004) and the betareg package (Cribari-Neto and Zeileis 2010);
V=\mu(1-\mu)/(\phi+1)
- betabinomial
Beta-binomial distribution: parameterized according to Morris (1997).
V=\mu(1-\mu)(n(\phi+n)/(\phi+1))
- tweedie
Tweedie distribution:
V=\phi\mu^power
. The power parameter is restricted to the interval1<power<2
. Code taken from thetweedie
package, written by Peter Dunn.- t_family
Student-t distribution with adjustable scale and location parameters (also called a Pearson type VII distribution). The shape (degrees of freedom parameter) is fitted with a log link; it may be often be useful to fix the shape parameter using
start = list(psi = log(fixed_df)), map = list(psi = factor(NA))
.- ordbeta
Ordered beta regression from Kubinec (2022); fits continuous (e.g. proportion) data in the closed interval [0,1].
- lognormal
Log-normal, parameterized by the mean and standard deviation on the data scale
Value
returns a list with (at least) components
family |
length-1 character vector giving the family name |
link |
length-1 character vector specifying the link function |
variance |
a function of either 1 (mean) or 2 (mean and dispersion
parameter) arguments giving a value proportional to the
predicted variance (scaled by |
References
Consul PC & Famoye F (1992). "Generalized Poisson regression model." Communications in Statistics: Theory and Methods 21:89–109.
Ferrari SLP, Cribari-Neto F (2004). "Beta Regression for Modelling Rates and Proportions." J. Appl. Stat. 31(7), 799-815.
Hardin JW & Hilbe JM (2007). "Generalized linear models and extensions." Stata Press.
Huang A (2017). "Mean-parametrized Conway–Maxwell–Poisson regression models for dispersed counts." Statistical Modelling 17(6), 1-22.
Joe H, Zhu R (2005). "Generalized Poisson Distribution: The Property of Mixture of Poisson and Comparison with Negative Binomial Distribution." Biometrical Journal 47(2): 219–29. doi:10.1002/bimj.200410102.
Morris W (1997). "Disentangling Effects of Induced Plant Defenses and Food Quantity on Herbivores by Fitting Nonlinear Models." American Naturalist 150:299-327.
Kubinec R (2022). "Ordered Beta Regression: A Parsimonious, Well-Fitting Model for Continuous Data with Lower and Upper Bounds." Political Analysis. doi:10.1017/pan.2022.20.
Sellers K & Lotze T (2015). "COMPoissonReg: Conway-Maxwell Poisson (COM-Poisson) Regression". R package version 0.3.5. https://CRAN.R-project.org/package=COMPoissonReg
Sellers K & Shmueli G (2010) "A Flexible Regression Model for Count Data." Annals of Applied Statistics 4(2), 943–61. doi:10.1214/09-AOAS306.
Shonkwiler, J. S. (2016). "Variance of the truncated negative binomial distribution." Journal of Econometrics 195(2), 209–210. doi:10.1016/j.jeconom.2016.09.002.