getPredictErr.gllvm {gllvm} | R Documentation |
Extract prediction errors for latent variables from gllvm object
Description
Calculates the prediction errors for latent variables and random effects for gllvm model.
Usage
## S3 method for class 'gllvm'
getPredictErr(object, CMSEP = TRUE, cov = FALSE, ...)
Arguments
object |
an object of class 'gllvm'. |
CMSEP |
logical, if |
cov |
if |
... |
not used |
Details
Calculates conditional mean squared errors for predictions. If variational approximation is used, prediction errors can be based on covariances of the variational distributions, and therefore they do not take into account the uncertainty in the estimation of (fixed) parameters.
Value
Function returns following components:
lvs |
prediction errors for latent variables |
row.effects |
prediction errors for random row effects if included |
Author(s)
Francis K.C. Hui, Jenni Niku, David I. Warton
Examples
## Not run:
# Load a dataset from the mvabund package
data(antTraits)
y <- as.matrix(antTraits$abund)
# Fit gllvm model
fit <- gllvm(y = y, family = poisson())
# prediction errors for latent variables:
getPredictErr(fit)
## End(Not run)