log_posteriori_of_gips {gips}R Documentation

A log of a posteriori that the covariance matrix is invariant under permutation

Description

More precisely, it is the logarithm of an unnormalized posterior probability. It is the goal function for optimization algorithms in the find_MAP() function. The perm_proposal that maximizes this function is the Maximum A Posteriori (MAP) Estimator.

Usage

log_posteriori_of_gips(g)

Arguments

g

An object of a gips class.

Details

It is calculated using formulas (33) and (27) from references.

If Inf or NaN is reached, it produces a warning.

Value

Returns a value of the logarithm of an unnormalized A Posteriori.

References

Piotr Graczyk, Hideyuki Ishi, Bartosz Kołodziejek, Hélène Massam. "Model selection in the space of Gaussian models invariant by symmetry." The Annals of Statistics, 50(3) 1747-1774 June 2022. arXiv link; doi:10.1214/22-AOS2174

See Also

Examples

# In the space with p = 2, there is only 2 permutations:
perm1 <- permutations::as.cycle("(1)(2)")
perm2 <- permutations::as.cycle("(1,2)")
S1 <- matrix(c(1, 0.5, 0.5, 2), nrow = 2, byrow = TRUE)
g1 <- gips(S1, 100, perm = perm1)
g2 <- gips(S1, 100, perm = perm2)
log_posteriori_of_gips(g1) # -134.1615, this is the MAP Estimator
log_posteriori_of_gips(g2) # -138.1695

exp(log_posteriori_of_gips(g1) - log_posteriori_of_gips(g2)) # 55.0
# g1 is 55 times more likely than g2.
# This is the expected outcome because S[1,1] significantly differs from S[2,2].

compare_posteriories_of_perms(g1, g2)
# The same result, but presented in a more pleasant way

# ========================================================================

S2 <- matrix(c(1, 0.5, 0.5, 1.1), nrow = 2, byrow = TRUE)
g1 <- gips(S2, 100, perm = perm1)
g2 <- gips(S2, 100, perm = perm2)
log_posteriori_of_gips(g1) # -98.40984
log_posteriori_of_gips(g2) # -95.92039, this is the MAP Estimator

exp(log_posteriori_of_gips(g2) - log_posteriori_of_gips(g1)) # 12.05
# g2 is 12 times more likely than g1.
# This is the expected outcome because S[1,1] is very close to S[2,2].

compare_posteriories_of_perms(g2, g1)
# The same result, but presented in a more pleasant way

[Package gips version 1.2.1 Index]