| compare_posteriories_of_perms {gips} | R Documentation | 
Compare the posteriori probabilities of 2 permutations
Description
Check which permutation is more likely and how much more likely.
Usage
compare_posteriories_of_perms(
  perm1,
  perm2 = "()",
  S = NULL,
  number_of_observations = NULL,
  delta = 3,
  D_matrix = NULL,
  was_mean_estimated = TRUE,
  print_output = TRUE,
  digits = 3
)
compare_log_posteriories_of_perms(
  perm1,
  perm2 = "()",
  S = NULL,
  number_of_observations = NULL,
  delta = 3,
  D_matrix = NULL,
  was_mean_estimated = TRUE,
  print_output = TRUE,
  digits = 3
)
Arguments
| perm1,perm2 | Permutations to compare.
How many times  | 
| S,number_of_observations,delta,D_matrix,was_mean_estimated | The same parameters as in the  | 
| print_output | A boolean.
When  | 
| digits | Integer. Only used when  | 
Value
The function compare_posteriories_of_perms() returns
the value of how many times the perm1 is more likely than perm2.
The function compare_log_posteriories_of_perms() returns
the logarithm of how many times the perm1 is more likely than perm2.
Functions
-  compare_log_posteriories_of_perms(): More stable, logarithmic version ofcompare_posteriories_of_perms(). The natural logarithm is used.
See Also
-  print.gips()- The function that prints the posterior of the optimizedgipsobject compared to the starting permutation.
-  summary.gips()- The function that calculates the posterior of the optimizedgipsobject compared to the starting permutation.
-  find_MAP()- The function that finds the permutation that maximizeslog_posteriori_of_gips().
-  log_posteriori_of_gips()- The function thiscompare_posteriories_of_perms()calls underneath.
Examples
require("MASS") # for mvrnorm()
perm_size <- 6
mu <- runif(6, -10, 10) # Assume we don't know the mean
sigma_matrix <- matrix(
  data = c(
    1.05, 0.8, 0.6, 0.4, 0.6, 0.8,
    0.8, 1.05, 0.8, 0.6, 0.4, 0.6,
    0.6, 0.8, 1.05, 0.8, 0.6, 0.4,
    0.4, 0.6, 0.8, 1.05, 0.8, 0.6,
    0.6, 0.4, 0.6, 0.8, 1.05, 0.8,
    0.8, 0.6, 0.4, 0.6, 0.8, 1.05
  ),
  nrow = perm_size, byrow = TRUE
) # sigma_matrix is a matrix invariant under permutation (1,2,3,4,5,6)
number_of_observations <- 13
Z <- MASS::mvrnorm(number_of_observations, mu = mu, Sigma = sigma_matrix)
S <- cov(Z) # Assume we have to estimate the mean
g <- gips(S, number_of_observations)
g_map <- find_MAP(g, max_iter = 10, show_progress_bar = FALSE, optimizer = "Metropolis_Hastings")
compare_posteriories_of_perms(g_map, g, print_output = TRUE)
exp(compare_log_posteriories_of_perms(g_map, g, print_output = FALSE))