AIC.gips {gips}R Documentation

Akaike's An Information Criterion for gips class

Description

Akaike's An Information Criterion for gips class

Usage

## S3 method for class 'gips'
AIC(object, ..., k = 2)

## S3 method for class 'gips'
BIC(object, ...)

Arguments

object

An object of class gips. Usually, a result of a find_MAP().

...

Further arguments will be ignored.

k

Numeric, the penalty per parameter to be used. The default k = 2 is the classical AIC.

Value

AIC.gips() returns calculated Akaike's An Information Criterion

When the multivariate normal model does not exist (number_of_observations < n0), it returns NULL. When the multivariate normal model cannot be reasonably approximated (output of project_matrix() is singular), it returns Inf.

In both failure situations, shows a warning. More information can be found in the Existence of likelihood section of logLik.gips().

BIC.gips() returns calculated Schwarz's Bayesian Information Criterion.

Functions

Calculation details

For more details and used formulas, see the Information Criterion - AIC and BIC section in vignette("Theory", package = "gips") or its pkgdown page.

See Also

Examples

S <- matrix(c(
  5.15, 2.05, 3.10, 1.99,
  2.05, 5.09, 2.03, 3.07,
  3.10, 2.03, 5.21, 1.97,
  1.99, 3.07, 1.97, 5.13
), nrow = 4)
g <- gips(S, 14)
g_map <- find_MAP(g, optimizer = "brute_force")

AIC(g) # 238
AIC(g_map) # 224 < 238, so g_map is better than g in AIC
# ================================================================================
BIC(g) # 244
BIC(g_map) # 226 < 244, so g_map is better than g in BIC

[Package gips version 1.2.1 Index]