| AIC.gips {gips} | R Documentation |
Akaike's An Information Criterion for gips class
Description
Akaike's An Information Criterion for gips class
Usage
## S3 method for class 'gips'
AIC(object, ..., k = 2)
## S3 method for class 'gips'
BIC(object, ...)
Arguments
object |
An object of class |
... |
Further arguments will be ignored. |
k |
Numeric, the penalty per parameter to be used.
The default |
Value
AIC.gips() returns calculated Akaike's An Information Criterion
When the multivariate normal model does not exist
(number_of_observations < n0), it returns NULL.
When the multivariate normal model cannot be reasonably approximated
(output of project_matrix() is singular), it returns Inf.
In both failure situations, shows a warning.
More information can be found in the Existence of likelihood
section of logLik.gips().
BIC.gips() returns calculated
Schwarz's Bayesian Information Criterion.
Functions
-
BIC(gips): Schwarz's Bayesian Information Criterion
Calculation details
For more details and used formulas, see
the Information Criterion - AIC and BIC section in
vignette("Theory", package = "gips") or its
pkgdown page.
See Also
-
AIC(),BIC()- Generic functions thisAIC.gips()andBIC.gips()extend. -
find_MAP()- Usually, theAIC.gips()andBIC.gips()are called on the output offind_MAP(). -
logLik.gips()- Calculates the log-likelihood for thegipsobject. An important part of the Information Criteria.
Examples
S <- matrix(c(
5.15, 2.05, 3.10, 1.99,
2.05, 5.09, 2.03, 3.07,
3.10, 2.03, 5.21, 1.97,
1.99, 3.07, 1.97, 5.13
), nrow = 4)
g <- gips(S, 14)
g_map <- find_MAP(g, optimizer = "brute_force")
AIC(g) # 238
AIC(g_map) # 224 < 238, so g_map is better than g in AIC
# ================================================================================
BIC(g) # 244
BIC(g_map) # 226 < 244, so g_map is better than g in BIC