| transform-extract-methods {ghyp} | R Documentation |
Linear transformation and extraction of generalized hyperbolic distributions
Description
The transform function can be used to linearly transform
generalized hyperbolic distribution objects (see Details). The
extraction operator [ extracts some margins of a multivariate
generalized hyperbolic distribution object.
Usage
## S4 method for signature 'ghyp'
transform(`_data`, summand, multiplier)
## S3 method for class 'ghyp'
x[i = c(1, 2)]
Arguments
_data |
An object inheriting from class |
summand |
A |
multiplier |
A |
x |
A multivariate generalized hyperbolic distribution inheriting from class |
i |
Index specifying which dimensions to extract. |
Details
If X \sim GH, transform gives the
distribution object of “multiplier * X + summand”, where X is
the argument named _data.
If the object is of class mle.ghyp,
iformation concerning the fitting procedure
(cf. ghyp.fit.info) will be lost as the return value is an
object of class ghyp.
Value
An object of class ghyp.
Author(s)
David Luethi
See Also
scale, ghyp,
fit.ghypuv and fit.ghypmv for constructors
of ghyp objects.
Examples
## Mutivariate generalized hyperbolic distribution
multivariate.ghyp <- ghyp(sigma=var(matrix(rnorm(9),ncol=3)), mu=1:3, gamma=-2:0)
## Dimension reduces to 2
transform(multivariate.ghyp, multiplier=matrix(1:6,nrow=2), summand=10:11)
## Dimension reduces to 1
transform(multivariate.ghyp, multiplier=1:3)
## Simple transformation
transform(multivariate.ghyp, summand=100:102)
## Extract some dimension
multivariate.ghyp[1]
multivariate.ghyp[c(1, 3)]