transform-extract-methods {ghyp} | R Documentation |
Linear transformation and extraction of generalized hyperbolic distributions
Description
The transform
function can be used to linearly transform
generalized hyperbolic distribution objects (see Details). The
extraction operator [
extracts some margins of a multivariate
generalized hyperbolic distribution object.
Usage
## S4 method for signature 'ghyp'
transform(`_data`, summand, multiplier)
## S3 method for class 'ghyp'
x[i = c(1, 2)]
Arguments
_data |
An object inheriting from class |
summand |
A |
multiplier |
A |
x |
A multivariate generalized hyperbolic distribution inheriting from class |
i |
Index specifying which dimensions to extract. |
Details
If X \sim GH
, transform
gives the
distribution object of “multiplier * X + summand”, where X is
the argument named _data
.
If the object is of class mle.ghyp
,
iformation concerning the fitting procedure
(cf. ghyp.fit.info
) will be lost as the return value is an
object of class ghyp
.
Value
An object of class ghyp
.
Author(s)
David Luethi
See Also
scale
, ghyp
,
fit.ghypuv
and fit.ghypmv
for constructors
of ghyp
objects.
Examples
## Mutivariate generalized hyperbolic distribution
multivariate.ghyp <- ghyp(sigma=var(matrix(rnorm(9),ncol=3)), mu=1:3, gamma=-2:0)
## Dimension reduces to 2
transform(multivariate.ghyp, multiplier=matrix(1:6,nrow=2), summand=10:11)
## Dimension reduces to 1
transform(multivariate.ghyp, multiplier=1:3)
## Simple transformation
transform(multivariate.ghyp, summand=100:102)
## Extract some dimension
multivariate.ghyp[1]
multivariate.ghyp[c(1, 3)]