stepAIC.ghyp {ghyp} | R Documentation |
Perform a model selection based on the AIC
Description
This function performs a model selection in the scope of the
generalized hyperbolic distribution class based on the Akaike
information criterion. stepAIC.ghyp
can be used for the
univariate as well as for the multivariate case.
Usage
stepAIC.ghyp(data, dist = c("ghyp", "hyp", "NIG", "VG", "t", "gauss"),
symmetric = NULL, ...)
Arguments
data |
A |
dist |
A character vector of distributions from where the best fit will be identified. |
symmetric |
Either |
... |
Arguments passed to |
Value
A list with components:
best.model |
The model minimizing the AIC. |
all.models |
All fitted models. |
fit.table |
A |
Author(s)
David Luethi
See Also
lik.ratio.test
, fit.ghypuv
and fit.ghypmv
.
Examples
data(indices)
# Multivariate case:
aic.mv <- stepAIC.ghyp(indices, dist = c("ghyp", "hyp", "t", "gauss"),
symmetric = NULL, control = list(maxit = 500),
silent = TRUE, nit = 500)
summary(aic.mv$best.model)
# Univariate case:
aic.uv <- stepAIC.ghyp(indices[, "stock"], dist = c("ghyp", "NIG", "VG", "gauss"),
symmetric = TRUE, control = list(maxit = 500), silent = TRUE)
# Test whether the ghyp-model provides a significant improvement with
# respect to the VG-model:
lik.ratio.test(aic.uv$all.models[[1]], aic.uv$all.models[[3]])