ghyp-mle.ghyp-classes {ghyp} | R Documentation |
Classes ghyp and mle.ghyp
Description
The class “ghyp” basically contains the parameters of a
generalized hyperbolic distribution. The class “mle.ghyp”
inherits from the class “ghyp”. The class “mle.ghyp”
adds some additional slots which contain information about the fitting
procedure. Namely, these are the number of iterations (n.iter
),
the log likelihood value (llh
), the Akaike Information
Criterion (aic
), a boolean vector (fitted.params
)
stating which parameters were fitted, a boolean converged
whether the fitting procedure converged or not, an error.code
which stores the status of a possible error and the corresponding
error.message
. In the univariate case the parameter variance is
also stored in parameter.variance
.
Objects from the Class
Objects should only be created by calls to the constructors
ghyp
, hyp
, NIG
,
VG
, student.t
and gauss
or
by calls to the fitting routines like fit.ghypuv
,
fit.ghypmv
, fit.hypuv
,
fit.hypmv
et cetera.
Slots
Slots of class ghyp:
call
:The function-call of class
call
.lambda
:Shape parameter of class
numeric
.alpha.bar
:Shape parameter of class
numeric
.chi
:Shape parameter of an alternative parametrization. Object of class
numeric
.psi
:Shape parameter of an alternative parametrization. Object of class
numeric
.mu
:Location parameter of lass
numeric
.sigma
:Dispersion parameter of class
matrix
.gamma
:Skewness parameter of class
numeric
.model
:Model, i.e., (a)symmetric generalized hyperbolic distribution or (a)symmetric special case. Object of class
character
.dimension
:Dimension of the generalized hyperbolic distribution. Object of class
numeric
.expected.value
:The expected value of a generalized hyperbolic distribution. Object of class
numeric
.variance
:The variance of a generalized hyperbolic distribution of class
matrix
.data
:The data-slot is of class
matrix
. When an object of classghypmv
is instantiated the user can decide whether data should be stored within the object or not. This is the default and may be useful when fitting eneralized hyperbolic distributions to data and perform further analysis afterwards.parametrization
:Parametrization of the generalized hyperbolic distribution of class
character
. These are currently either “chi.psi”, “alpha.bar” or “alpha.delta”.
Slots added by class mle.ghyp:
n.iter
:The number of iterations of class
numeric
.llh
:The log likelihood value of class
numeric
.converged
:A boolean whether converged or not. Object of class
logical
.error.code
:An error code of class
numeric
.error.message
:An error message of class
character
.fitted.params
:A boolean vector stating which parameters were fitted of class
logical
.aic
:The value of the Akaike Information Criterion of class
numeric
.parameter.variance
:The parameter variance is the inverse of the fisher information matrix. This slot is filled only in the case of an univariate fit. This slot is of class
matrix
.trace.pars
:Contains the parameter value evolution during the fitting procedure.
trace.pars
of classlist
.
Extends
Class “mle.ghyp” extends class "ghyp"
, directly.
Methods
A “pairs” method (see pairs
).
A “hist” method (see hist
).
A “plot” method (see plot
).
A “lines” method (see lines
).
A “coef” method (see coef
).
A “mean” method (see mean
).
A “vcov” method (see vcov
).
A “scale” method (see scale
).
A “transform” method (see transform
).
A “[.ghyp” method (see [
).
A “logLik” method for objects of class “mle.ghyp” (see logLik
).
An “AIC” method for objects of class “mle.ghyp” (see AIC
).
A “summary” method for objects of class “mle.ghyp” (see summary
).
Note
When showing special cases of the generalized hyperbolic distribution the corresponding fixed parameters are not printed.
Author(s)
David Luethi
See Also
optim
for an interpretation of error.code
, error.message
and parameter.variance
.
ghyp
, hyp
, NIG
, VG
, student.t
and
gauss
for constructors of the class ghyp
in the “alpha.bar” and “chi/psi” parametrization.
xxx.ad
for all the constructors in the “alpha/delta” parametrization.
fit.ghypuv
, fit.ghypmv
et cetera for the fitting routies and constructors of the class
mle.ghyp
.
Examples
data(smi.stocks)
multivariate.fit <- fit.ghypmv(data = smi.stocks,
opt.pars = c(lambda = FALSE, alpha.bar = FALSE),
lambda = 2)
summary(multivariate.fit)
vcov(multivariate.fit)
mean(multivariate.fit)
logLik(multivariate.fit)
AIC(multivariate.fit)
coef(multivariate.fit)
univariate.fit <- multivariate.fit[1]
hist(univariate.fit)
plot(univariate.fit)
lines(multivariate.fit[2])