ggadjust_pvalue {ggpubr} | R Documentation |
Adjust p-values Displayed on a GGPlot
Description
Adjust p-values produced by geom_pwc()
on a ggplot.
This is mainly useful when using facet, where p-values are generally
computed and adjusted by panel without taking into account the other panels.
In this case, one might want to adjust after the p-values of all panels together.
Usage
ggadjust_pvalue(
p,
layer = NULL,
p.adjust.method = "holm",
label = "p.adj",
hide.ns = NULL,
symnum.args = list(),
output = c("plot", "stat_test")
)
Arguments
p |
a ggplot |
layer |
An integer indicating the statistical layer rank in the ggplot (in the order added to the plot). |
p.adjust.method |
method for adjusting p values (see
|
label |
character string specifying label. Can be:
. |
hide.ns |
can be logical value ( |
symnum.args |
a list of arguments to pass to the function
In other words, we use the following convention for symbols indicating statistical significance:
|
output |
character. Possible values are one of |
Examples
# Data preparation
#:::::::::::::::::::::::::::::::::::::::
df <- ToothGrowth
df$dose <- as.factor(df$dose)
# Add a random grouping variable
df$group <- factor(rep(c("grp1", "grp2"), 30))
head(df, 3)
# Boxplot: Two groups by panel
#:::::::::::::::::::::::::::::::::::::::
# Create a box plot
bxp <- ggboxplot(
df, x = "supp", y = "len", fill = "#00AFBB",
facet.by = "dose"
)
# Make facet and add p-values
bxp <- bxp + geom_pwc(method = "t_test")
bxp
# Adjust all p-values together after
ggadjust_pvalue(
bxp, p.adjust.method = "bonferroni",
label = "{p.adj.format}{p.adj.signif}", hide.ns = TRUE
)
# Boxplot: Three groups by panel
#:::::::::::::::::::::::::::::::::::::::
# Create a box plot
bxp <- ggboxplot(
df, x = "dose", y = "len", fill = "#00AFBB",
facet.by = "supp"
)
# Make facet and add p-values
bxp <- bxp + geom_pwc(method = "t_test")
bxp
# Adjust all p-values together after
ggadjust_pvalue(
bxp, p.adjust.method = "bonferroni",
label = "{p.adj.format}{p.adj.signif}"
)