compare_means {ggpubr} | R Documentation |
Comparison of Means
Description
Performs one or multiple mean comparisons.
Usage
compare_means(
formula,
data,
method = "wilcox.test",
paired = FALSE,
group.by = NULL,
ref.group = NULL,
symnum.args = list(),
p.adjust.method = "holm",
...
)
Arguments
formula |
a formula of the form It's also possible to perform the test for multiple response variables at
the same time. For example, |
data |
a data.frame containing the variables in the formula. |
method |
the type of test. Default is wilcox.test. Allowed values include:
|
paired |
a logical indicating whether you want a paired test. Used only
in |
group.by |
a character vector containing the name of grouping variables. |
ref.group |
a character string specifying the reference group. If specified, for a given grouping variable, each of the group levels will be compared to the reference group (i.e. control group).
|
symnum.args |
a list of arguments to pass to the function
In other words, we use the following convention for symbols indicating statistical significance:
|
p.adjust.method |
method for adjusting p values (see
Note that, when the |
... |
Other arguments to be passed to the test function. |
Value
return a data frame with the following columns:
-
.y.
: the y variable used in the test. -
group1,group2
: the compared groups in the pairwise tests. Available only whenmethod = "t.test"
ormethod = "wilcox.test"
. -
p
: the p-value. -
p.adj
: the adjusted p-value. Default forp.adjust.method = "holm"
. -
p.format
: the formatted p-value. -
p.signif
: the significance level. -
method
: the statistical test used to compare groups.
Examples
# Load data
#:::::::::::::::::::::::::::::::::::::::
data("ToothGrowth")
df <- ToothGrowth
# One-sample test
#:::::::::::::::::::::::::::::::::::::::::
compare_means(len ~ 1, df, mu = 0)
# Two-samples unpaired test
#:::::::::::::::::::::::::::::::::::::::::
compare_means(len ~ supp, df)
# Two-samples paired test
#:::::::::::::::::::::::::::::::::::::::::
compare_means(len ~ supp, df, paired = TRUE)
# Compare supp levels after grouping the data by "dose"
#::::::::::::::::::::::::::::::::::::::::
compare_means(len ~ supp, df, group.by = "dose")
# pairwise comparisons
#::::::::::::::::::::::::::::::::::::::::
# As dose contains more thant two levels ==>
# pairwise test is automatically performed.
compare_means(len ~ dose, df)
# Comparison against reference group
#::::::::::::::::::::::::::::::::::::::::
compare_means(len ~ dose, df, ref.group = "0.5")
# Comparison against all
#::::::::::::::::::::::::::::::::::::::::
compare_means(len ~ dose, df, ref.group = ".all.")
# Anova and kruskal.test
#::::::::::::::::::::::::::::::::::::::::
compare_means(len ~ dose, df, method = "anova")
compare_means(len ~ dose, df, method = "kruskal.test")