use_label {ggpmisc} | R Documentation |
Assemble label and map it
Description
Assemble model-fit-derived text or expressions and map them to
the label
aesthetic.
Usage
use_label(..., labels = NULL, other.mapping = NULL, sep = "*\", \"*")
Arguments
... |
character Strings giving the names of the label components in the order they will be included in the combined label. |
labels |
character A vector with the name of the label components. If
provided, values passed through |
other.mapping |
An unevaluated expression constructed with function
|
sep |
character A string used as separator when pasting the label components together. |
Details
Statistics stat_poly_eq
, stat_ma_eq
,
stat_quant_eq
and stat_correlation
return
multiple text strings to be used individually or assembled into longer
character strings depending on the labels actually desired. Assembling and
mapping them requires verbose R code and familiarity with R expression
syntax. Function use_label()
automates these two tasks and accepts
abbreviated familiar names for the parameters in addition to the name of
the columns in the data object returned by the statistics. The default
separator is that for expressions.
The statistics return variables with names ending in .label
. This
ending can be omitted, as well as .value
for f.value.label
,
t.value.label
, z.value.label
, S.value.label
and
p.value.label
. R2
can be used in place of rr
.
Furthermore, case is ignored.
Function use_label()
calls aes()
to create a mapping for
the label
aesthetic, but it can in addition combine this mapping
with other mappings created with aes()
.
Value
A mapping to the label
aesthetic and optionally additional
mappings as an unevaluated R expression, built using function
aes
, ready to be passed as argument to the
mapping
parameter of the supported statistics.
Note
Function use_label()
can be only used to generate an argument
passed to formal parameter mapping
of the statistics
stat_poly_eq
, stat_ma_eq
,
stat_quant_eq
and stat_correlation
.
See Also
stat_poly_eq
, stat_ma_eq
,
stat_quant_eq
and stat_correlation
.
Examples
# generate artificial data
set.seed(4321)
x <- 1:100
y <- (x + x^2 + x^3) + rnorm(length(x), mean = 0, sd = mean(x^3) / 4)
my.data <- data.frame(x = x,
y = y * 1e-5,
group = c("A", "B"),
y2 = y * 1e-5 + c(2, 0))
# give a name to a formula
formula <- y ~ poly(x, 3, raw = TRUE)
# default label constructed by use_label()
ggplot(data = my.data,
mapping = aes(x = x, y = y2, colour = group)) +
geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(mapping = use_label(),
formula = formula)
# user specified label components
ggplot(data = my.data,
mapping = aes(x = x, y = y2, colour = group)) +
geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(mapping = use_label("eq", "F"),
formula = formula)
# user specified label components and separator
ggplot(data = my.data,
mapping = aes(x = x, y = y2, colour = group)) +
geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(mapping = use_label("R2", "F", sep = "*\" with \"*"),
formula = formula)
# combine the mapping to the label aesthetic with other mappings
ggplot(data = my.data,
mapping = aes(x = x, y = y2)) +
geom_point(mapping = aes(colour = group)) +
stat_poly_line(mapping = aes(colour = group), formula = formula) +
stat_poly_eq(mapping = use_label("grp", "eq", "F",
aes(grp.label = group)),
formula = formula)
# combine other mappings with default labels
ggplot(data = my.data,
mapping = aes(x = x, y = y2)) +
geom_point(mapping = aes(colour = group)) +
stat_poly_line(mapping = aes(colour = group), formula = formula) +
stat_poly_eq(mapping = use_label(aes(colour = group)),
formula = formula)
# example with other available components
ggplot(data = my.data,
mapping = aes(x = x, y = y2, colour = group)) +
geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(mapping = use_label("eq", "adj.R2", "n"),
formula = formula)
# multiple labels
ggplot(data = my.data,
mapping = aes(x, y2, colour = group)) +
geom_point() +
stat_poly_line(formula = formula) +
stat_poly_eq(mapping = use_label("R2", "F", "P", "AIC", "BIC"),
formula = formula) +
stat_poly_eq(mapping = use_label(c("eq", "n")),
formula = formula,
label.y = "bottom",
label.x = "right")
# quantile regression
ggplot(data = my.data,
mapping = aes(x, y)) +
stat_quant_band(formula = formula) +
stat_quant_eq(mapping = use_label("eq", "n"),
formula = formula) +
geom_point()
# major axis regresion
ggplot(data = my.data, aes(x = x, y = y)) +
stat_ma_line() +
stat_ma_eq(mapping = use_label("eq", "n")) +
geom_point()
# correlation
ggplot(data = my.data,
mapping = aes(x = x, y = y)) +
stat_correlation(mapping = use_label("r", "t", "p")) +
geom_point()