ggdmc {ggdmc}R Documentation

Bayeisan computation of response time models

Description

ggdmc uses the population-based Markov chain Monte Carlo to conduct Bayesian computation on cognitive models.

Author(s)

Yi-Shin Lin <yishinlin001@gmail.com>
Andrew Heathcote <andrew.heathcote@utas.edu.au>

References

Heathcote, A., Lin, Y.-S., Reynolds, A., Strickland, L., Gretton, M. & Matzke, D., (2018). Dynamic model of choice. Behavior Research Methods. https://doi.org/10.3758/s13428-018-1067-y.

Turner, B. M., & Sederberg P. B. (2012). Approximate Bayesian computation with differential evolution, Journal of Mathematical Psychology, 56, 375–385.

Ter Braak (2006). A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces. Statistics and Computing, 16, 239-249.


[Package ggdmc version 0.2.6.0 Index]