ggdmc {ggdmc} | R Documentation |
Bayeisan computation of response time models
Description
ggdmc uses the population-based Markov chain Monte Carlo to conduct Bayesian computation on cognitive models.
Author(s)
Yi-Shin Lin <yishinlin001@gmail.com>
Andrew Heathcote <andrew.heathcote@utas.edu.au>
References
Heathcote, A., Lin, Y.-S., Reynolds, A., Strickland, L., Gretton, M. &
Matzke, D., (2018). Dynamic model of choice.
Behavior Research Methods.
https://doi.org/10.3758/s13428-018-1067-y.
Turner, B. M., & Sederberg P. B. (2012). Approximate Bayesian computation
with differential evolution, Journal of Mathematical Psychology, 56,
375–385.
Ter Braak (2006). A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces. Statistics and Computing, 16, 239-249.
[Package ggdmc version 0.2.6.0 Index]