Cognitive Models


[Up] [Top]

Documentation for package ‘ggdmc’ version 0.2.6.0

Help Pages

ggdmc-package Bayeisan computation of response time models
BPIC Deviance information criteria
BuildDMI Bind data and models
BuildModel Create a model object
BuildPrior Specifying Parameter Prior Distributions
CheckConverged Model checking functions
check_pvec Does a model object specify a correct p.vector
ConvertChains Prepare posterior samples for plotting functions version 1
dbeta_lu A modified dbeta function
dcauchy_l A modified dcauchy functions
dconstant A pseudo constant function to get constant densities
deviance.model Calculate the statistics of model complexity
dgamma_l A modified dgamma function
DIC Deviance information criteria
dlnorm_l A modified dlnorm functions
dtnorm Truncated Normal Distribution
effectiveSize Calculate effective sample sizes
effectiveSize_hyper Calculate effective sample sizes
effectiveSize_many Calculate effective sample sizes
effectiveSize_one Calculate effective sample sizes
gelman Potential scale reduction factor
GetNsim Get a n-cell matrix
GetParameterMatrix Constructs a ns x npar matrix,
GetPNames Extract parameter names from a model object
get_os Retrieve information of operating system
ggdmc Bayeisan computation of response time models
hgelman Potential scale reduction factor
iseffective Model checking functions
isflat Model checking functions
ismixed Model checking functions
isstuck Model checking functions
likelihood Calculate log likelihoods
mcmc_list.model Create a MCMC list
phi2mcmclist Convert theta to a mcmc List
PickStuck Which chains get stuck
plot.prior Plot prior distributions
plot_prior Plot prior distributions
print.dmi Create a model object
print.model Create a model object
print.prior Print Prior Distribution
ptnorm Truncated Normal Distribution
random Generate random numbers
rlba_norm Generate Random Deviates of the LBA Distribution
rprior Parameter Prior Distributions
rtnorm Truncated Normal Distribution
run Start new model fits
simulate.model Simulate response time data
StartNewsamples Start new model fits
summary.model Summarise posterior samples
summary_mcmc_list Summary statistic for posterior samples
TableParameters Table response and parameter
theta2mcmclist Convert theta to a mcmc List
unstick_one Unstick posterios samples (One subject)