geom_hdr_fun {ggdensity} | R Documentation |
Highest density regions of a bivariate pdf
Description
Compute and plot the highest density regions (HDRs) of a bivariate pdf.
geom_hdr_fun()
draws filled regions, and geom_hdr_lines_fun()
draws lines outlining the regions.
Note, the plotted objects have probabilities mapped to the alpha
aesthetic by default.
Usage
stat_hdr_fun(
mapping = NULL,
data = NULL,
geom = "hdr_fun",
position = "identity",
...,
fun,
args = list(),
probs = c(0.99, 0.95, 0.8, 0.5),
xlim = NULL,
ylim = NULL,
n = 100,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
geom_hdr_fun(
mapping = NULL,
data = NULL,
stat = "hdr_fun",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
Arguments
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
geom |
The geometric object to use to display the data, either as a
|
position |
Position adjustment, either as a string naming the adjustment
(e.g. |
... |
Other arguments passed on to |
fun |
A function, the joint probability density function, must be vectorized in its first two arguments; see examples. |
args |
Named list of additional arguments passed on to |
probs |
Probabilities to compute highest density regions for. |
xlim , ylim |
Range to compute and draw regions. If |
n |
Resolution of grid |
na.rm |
If |
show.legend |
logical. Should this layer be included in the legends?
|
inherit.aes |
If |
stat |
The statistical transformation to use on the data for this
layer, either as a |
Aesthetics
geom_hdr_fun()
and geom_hdr_lines_fun()
understand the following aesthetics (required
aesthetics are in bold):
x
y
alpha
color
fill (only
geom_hdr_fun
)group
linetype
linewidth
subgroup
Computed variables
- probs
The probability associated with the highest density region, specified by
probs
.
Examples
# HDRs of the bivariate exponential
f <- function(x, y) dexp(x) * dexp(y)
ggplot() + geom_hdr_fun(fun = f, xlim = c(0, 10), ylim = c(0, 10))
# HDRs of a custom parametric model
# generate example data
n <- 1000
th_true <- c(3, 8)
rdata <- function(n, th) {
gen_single_obs <- function(th) {
rchisq(2, df = th) # can be anything
}
df <- replicate(n, gen_single_obs(th))
setNames(as.data.frame(t(df)), c("x", "y"))
}
data <- rdata(n, th_true)
# estimate unknown parameters via maximum likelihood
likelihood <- function(th) {
th <- abs(th) # hack to enforce parameter space boundary
log_f <- function(v) {
x <- v[1]; y <- v[2]
dchisq(x, df = th[1], log = TRUE) + dchisq(y, df = th[2], log = TRUE)
}
sum(apply(data, 1, log_f))
}
(th_hat <- optim(c(1, 1), likelihood, control = list(fnscale = -1))$par)
# plot f for the give model
f <- function(x, y, th) dchisq(x, df = th[1]) * dchisq(y, df = th[2])
ggplot(data, aes(x, y)) +
geom_hdr_fun(fun = f, args = list(th = th_hat)) +
geom_point(size = .25, color = "red") +
xlim(0, 30) + ylim(c(0, 30))
ggplot(data, aes(x, y)) +
geom_hdr_lines_fun(fun = f, args = list(th = th_hat)) +
geom_point(size = .25, color = "red") +
xlim(0, 30) + ylim(c(0, 30))