plot.gg_partial {ggRandomForests} | R Documentation |
Partial variable dependence plot, operates on a gg_partial
object.
Description
Generate a risk adjusted (partial) variable dependence plot.
The function plots the rfsrc
response variable
(y-axis) against the covariate of interest (specified when creating the
gg_partial
object).
Usage
## S3 method for class 'gg_partial'
plot(x, points = TRUE, error = c("none", "shade", "bars", "lines"), ...)
Arguments
x |
|
points |
plot points (boolean) or a smooth line. |
error |
"shade", "bars", "lines" or "none" |
... |
extra arguments passed to |
Value
ggplot
object
References
Breiman L. (2001). Random forests, Machine Learning, 45:5-32.
Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.
Ishwaran H. and Kogalur U.B. (2013). Random Forests for Survival, Regression and Classification (RF-SRC), R package version 1.4.
See Also
plot.variable
gg_partial
plot.gg_partial_list
gg_variable
plot.gg_variable
Examples
## Not run:
## ------------------------------------------------------------
## classification
## ------------------------------------------------------------
## -------- iris data
## iris "Petal.Width" partial dependence plot
##
# rfsrc_iris <- rfsrc(Species ~., data = iris)
# partial_iris <- plot.variable(rfsrc_iris, xvar.names = "Petal.Width",
# partial=TRUE)
data(partial_iris, package="ggRandomForests")
gg_dta <- gg_partial(partial_iris)
plot(gg_dta)
## ------------------------------------------------------------
## regression
## ------------------------------------------------------------
## -------- air quality data
## airquality "Wind" partial dependence plot
##
# rfsrc_airq <- rfsrc(Ozone ~ ., data = airquality)
# partial_airq <- plot.variable(rfsrc_airq, xvar.names = "Wind",
# partial=TRUE, show.plot=FALSE)
data(partial_airq, package="ggRandomForests")
gg_dta <- gg_partial(partial_airq)
plot(gg_dta)
gg_dta.m <- gg_dta[["Month"]]
plot(gg_dta.m, notch=TRUE)
gg_dta[["Month"]] <- NULL
plot(gg_dta, panel=TRUE)
## -------- Boston data
data(partial_boston, package="ggRandomForests")
gg_dta <- gg_partial(partial_boston)
plot(gg_dta)
plot(gg_dta, panel=TRUE)
## -------- mtcars data
data(partial_mtcars, package="ggRandomForests")
gg_dta <- gg_partial(partial_mtcars)
plot(gg_dta)
gg_dta.cat <- gg_dta
gg_dta.cat[["disp"]] <- gg_dta.cat[["wt"]] <- gg_dta.cat[["hp"]] <- NULL
gg_dta.cat[["drat"]] <- gg_dta.cat[["carb"]] <-
gg_dta.cat[["qsec"]] <- NULL
plot(gg_dta.cat, panel=TRUE)
gg_dta[["cyl"]] <- gg_dta[["vs"]] <- gg_dta[["am"]] <- NULL
gg_dta[["gear"]] <- NULL
plot(gg_dta, panel=TRUE)
## ------------------------------------------------------------
## survival examples
## ------------------------------------------------------------
## -------- veteran data
## survival "age" partial variable dependence plot
##
# data(veteran, package = "randomForestSRC")
# rfsrc_veteran <- rfsrc(Surv(time,status)~., veteran, nsplit = 10,
# ntree = 100)
#
## 30 day partial plot for age
# partial_veteran <- plot.variable(rfsrc_veteran, surv.type = "surv",
# partial = TRUE, time=30,
# xvar.names = "age",
# show.plots=FALSE)
data(partial_veteran, package="ggRandomForests")
gg_dta <- gg_partial(partial_veteran[[1]])
plot(gg_dta)
gg_dta.cat <- gg_dta
gg_dta[["celltype"]] <- gg_dta[["trt"]] <- gg_dta[["prior"]] <- NULL
plot(gg_dta, panel=TRUE)
gg_dta.cat[["karno"]] <- gg_dta.cat[["diagtime"]] <-
gg_dta.cat[["age"]] <- NULL
plot(gg_dta.cat, panel=TRUE, notch=TRUE)
gg_dta <- lapply(partial_veteran, gg_partial)
length(gg_dta)
gg_dta <- combine.gg_partial(gg_dta[[1]], gg_dta[[2]] )
plot(gg_dta[["karno"]])
plot(gg_dta[["celltype"]])
gg_dta.cat <- gg_dta
gg_dta[["celltype"]] <- gg_dta[["trt"]] <- gg_dta[["prior"]] <- NULL
plot(gg_dta, panel=TRUE)
gg_dta.cat[["karno"]] <- gg_dta.cat[["diagtime"]] <-
gg_dta.cat[["age"]] <- NULL
plot(gg_dta.cat, panel=TRUE, notch=TRUE)
## -------- pbc data
## End(Not run)
[Package ggRandomForests version 2.2.1 Index]