gg_variable {ggRandomForests} | R Documentation |
Marginal variable dependence data object.
Description
plot.variable
generates a
data.frame
containing the marginal variable dependence or the
partial variable dependence. The gg_variable
function creates a
data.frame
of containing the full set of covariate data (predictor
variables) and the predicted response for each observation. Marginal
dependence figures are created using the plot.gg_variable
function.
Optional arguments time
point (or vector of points) of interest
(for survival forests only) time_labels
If more than one time is
specified, a vector of time labels for differentiating the time points
(for survival forests only) oob
indicate if predicted results
should include oob or full data set.
Usage
gg_variable(object, ...)
Arguments
object |
a |
... |
optional arguments |
Details
The marginal variable dependence is determined by comparing relation between the predicted response from the randomForest and a covariate of interest.
The gg_variable
function operates on a
rfsrc
object, or the output from the
plot.variable
function.
Value
gg_variable
object
See Also
Examples
## ------------------------------------------------------------
## classification
## ------------------------------------------------------------
## -------- iris data
## iris
rfsrc_iris <- rfsrc(Species ~., data = iris)
gg_dta <- gg_variable(rfsrc_iris)
plot(gg_dta, xvar="Sepal.Width")
plot(gg_dta, xvar="Sepal.Length")
plot(gg_dta, xvar=rfsrc_iris$xvar.names,
panel=TRUE) # , se=FALSE)
## ------------------------------------------------------------
## regression
## ------------------------------------------------------------
## Not run:
## -------- air quality data
rfsrc_airq <- rfsrc(Ozone ~ ., data = airquality)
gg_dta <- gg_variable(rfsrc_airq)
# an ordinal variable
gg_dta[,"Month"] <- factor(gg_dta[,"Month"])
plot(gg_dta, xvar="Wind")
plot(gg_dta, xvar="Temp")
plot(gg_dta, xvar="Solar.R")
plot(gg_dta, xvar=c("Solar.R", "Wind", "Temp", "Day"), panel=TRUE)
plot(gg_dta, xvar="Month", notch=TRUE)
## End(Not run)
## Not run:
## -------- motor trend cars data
rfsrc_mtcars <- rfsrc(mpg ~ ., data = mtcars)
gg_dta <- gg_variable(rfsrc_mtcars)
# mtcars$cyl is an ordinal variable
gg_dta$cyl <- factor(gg_dta$cyl)
gg_dta$am <- factor(gg_dta$am)
gg_dta$vs <- factor(gg_dta$vs)
gg_dta$gear <- factor(gg_dta$gear)
gg_dta$carb <- factor(gg_dta$carb)
plot(gg_dta, xvar="cyl")
# Others are continuous
plot(gg_dta, xvar="disp")
plot(gg_dta, xvar="hp")
plot(gg_dta, xvar="wt")
# panels
plot(gg_dta,xvar=c("disp","hp", "drat", "wt", "qsec"), panel=TRUE)
plot(gg_dta, xvar=c("cyl", "vs", "am", "gear", "carb"), panel=TRUE,
notch=TRUE)
## End(Not run)
## -------- Boston data
data(Boston, package="MASS")
rf_boston <- randomForest::randomForest(medv~., data=Boston)
gg_dta <- gg_variable(rf_boston)
plot(gg_dta)
plot(gg_dta, panel = TRUE)
## ------------------------------------------------------------
## survival examples
## ------------------------------------------------------------
## Not run:
## -------- veteran data
## survival
data(veteran, package = "randomForestSRC")
rfsrc_veteran <- rfsrc(Surv(time,status)~., veteran, nsplit = 10,
ntree = 100)
# get the 1 year survival time.
gg_dta <- gg_variable(rfsrc_veteran, time=90)
# Generate variable dependence plots for age and diagtime
plot(gg_dta, xvar = "age")
plot(gg_dta, xvar = "diagtime", )
# Generate coplots
plot(gg_dta, xvar = c("age", "diagtime"), panel=TRUE, se=FALSE)
# If we want to compare survival at different time points, say 30, 90 day
# and 1 year
gg_dta <- gg_variable(rfsrc_veteran, time=c(30, 90, 365))
# Generate variable dependence plots for age and diagtime
plot(gg_dta, xvar = "age")
## End(Not run)
## Not run:
## -------- pbc data
## We don't run this because of bootstrap confidence limits
# We need to create this dataset
data(pbc, package = "randomForestSRC",)
# For whatever reason, the age variable is in days... makes no sense to me
for (ind in seq_len(dim(pbc)[2])) {
if (!is.factor(pbc[, ind])) {
if (length(unique(pbc[which(!is.na(pbc[, ind])), ind])) <= 2) {
if (sum(range(pbc[, ind], na.rm = TRUE) == c(0, 1)) == 2) {
pbc[, ind] <- as.logical(pbc[, ind])
}
}
} else {
if (length(unique(pbc[which(!is.na(pbc[, ind])), ind])) <= 2) {
if (sum(sort(unique(pbc[, ind])) == c(0, 1)) == 2) {
pbc[, ind] <- as.logical(pbc[, ind])
}
if (sum(sort(unique(pbc[, ind])) == c(FALSE, TRUE)) == 2) {
pbc[, ind] <- as.logical(pbc[, ind])
}
}
}
if (!is.logical(pbc[, ind]) &
length(unique(pbc[which(!is.na(pbc[, ind])), ind])) <= 5) {
pbc[, ind] <- factor(pbc[, ind])
}
}
#Convert age to years
pbc$age <- pbc$age / 364.24
pbc$years <- pbc$days / 364.24
pbc <- pbc[, -which(colnames(pbc) == "days")]
pbc$treatment <- as.numeric(pbc$treatment)
pbc$treatment[which(pbc$treatment == 1)] <- "DPCA"
pbc$treatment[which(pbc$treatment == 2)] <- "placebo"
pbc$treatment <- factor(pbc$treatment)
dta_train <- pbc[-which(is.na(pbc$treatment)), ]
# Create a test set from the remaining patients
pbc_test <- pbc[which(is.na(pbc$treatment)), ]
#========
# build the forest:
rfsrc_pbc <- randomForestSRC::rfsrc(
Surv(years, status) ~ .,
dta_train,
nsplit = 10,
na.action = "na.impute",
forest = TRUE,
importance = TRUE,
save.memory = TRUE
)
gg_dta <- gg_variable(rfsrc_pbc, time=c(.5, 1, 3))
plot(gg_dta, xvar = "age")
plot(gg_dta, xvar = "trig")
# Generate coplots
plot(gg_dta, xvar = c("age", "trig"), panel=TRUE, se=FALSE)
## End(Not run)