gg_partial_coplot.rfsrc {ggRandomForests} | R Documentation |
Data structures for stratified partial coplots
Description
Data structures for stratified partial coplots
Usage
## S3 method for class 'rfsrc'
gg_partial_coplot(
object,
xvar,
groups,
surv_type = c("mort", "rel.freq", "surv", "years.lost", "cif", "chf"),
time,
show_plots = FALSE,
...
)
Arguments
object |
|
xvar |
list of partial plot variables |
groups |
vector of stratification variable. |
surv_type |
for survival random forests, c("mort", "rel.freq", "surv", "years.lost", "cif", "chf") |
time |
vector of time points for survival random forests partial plots. |
show_plots |
boolean passed to
|
... |
extra arguments passed to
|
Value
gg_partial_coplot
object. An subclass of a
gg_partial_list
object
Examples
## Not run:
## ------------------------------------------------------------
## -------- pbc data
# We need to create this dataset
data(pbc, package = "randomForestSRC")
# For whatever reason, the age variable is in days... makes no sense to me
for (ind in seq_len(dim(pbc)[2])) {
if (!is.factor(pbc[, ind])) {
if (length(unique(pbc[which(!is.na(pbc[, ind])), ind])) <= 2) {
if (sum(range(pbc[, ind], na.rm = TRUE) == c(0, 1)) == 2) {
pbc[, ind] <- as.logical(pbc[, ind])
}
}
} else {
if (length(unique(pbc[which(!is.na(pbc[, ind])), ind])) <= 2) {
if (sum(sort(unique(pbc[, ind])) == c(0, 1)) == 2) {
pbc[, ind] <- as.logical(pbc[, ind])
}
if (sum(sort(unique(pbc[, ind])) == c(FALSE, TRUE)) == 2) {
pbc[, ind] <- as.logical(pbc[, ind])
}
}
}
if (!is.logical(pbc[, ind]) &
length(unique(pbc[which(!is.na(pbc[, ind])), ind])) <= 5) {
pbc[, ind] <- factor(pbc[, ind])
}
}
#Convert age to years
pbc$age <- pbc$age / 364.24
pbc$years <- pbc$days / 364.24
pbc <- pbc[, -which(colnames(pbc) == "days")]
pbc$treatment <- as.numeric(pbc$treatment)
pbc$treatment[which(pbc$treatment == 1)] <- "DPCA"
pbc$treatment[which(pbc$treatment == 2)] <- "placebo"
pbc$treatment <- factor(pbc$treatment)
dta_train <- pbc[-which(is.na(pbc$treatment)), ]
# Create a test set from the remaining patients
pbc_test <- pbc[which(is.na(pbc$treatment)), ]
#========
# build the forest:
rfsrc_pbc <- randomForestSRC::rfsrc(
Surv(years, status) ~ .,
dta_train,
nsplit = 10,
na.action = "na.impute",
forest = TRUE,
importance = TRUE,
save.memory = TRUE
)
# Create the variable plot.
ggvar <- gg_variable(rfsrc_pbc, time = 1)
# Find intervals with similar number of observations.
copper_cts <- quantile_pts(ggvar$copper, groups = 6, intervals = TRUE)
# Create the conditional groups and add to the gg_variable object
copper_grp <- cut(ggvar$copper, breaks = copper_cts)
## We would run this, but it's expensive
partial_coplot_pbc <- gg_partial_coplot(rfsrc_pbc, xvar = "bili",
groups = copper_grp,
surv_type = "surv",
time = 1,
show.plots = FALSE)
# Partial coplot
plot(partial_coplot_pbc) #, se = FALSE)
## End(Not run)
[Package ggRandomForests version 2.2.1 Index]