eta_distribution_plot {ggPMX} | R Documentation |
Eta distribution plots
Description
Eta distribution plots
Eta Distribution boxplot
Eta Distribution histogram plot
Usage
eta_distribution_plot(
jitter,
type,
dname,
is.shrink,
shrink,
is.jitter,
histogram,
filter,
strat.facet,
facets,
strat.color,
trans,
pmxgpar,
labels,
axis.title,
axis.text,
ranges,
is.smooth,
smooth,
is.band,
band,
is.draft,
draft,
is.identity_line,
identity_line,
scale_x_log10,
scale_y_log10,
color.scales,
...
)
pmx_plot_eta_box(ctr, ...)
pmx_plot_eta_hist(ctr, ...)
Arguments
jitter |
list set jitter parameter |
type |
box for boxplot or histogram |
dname |
name of dataset to be used |
is.shrink |
|
shrink |
|
is.jitter |
|
histogram |
pmx_update parameters |
filter |
|
strat.facet |
|
facets |
|
strat.color |
|
trans |
|
pmxgpar |
a object of class pmx_gpar possibly the output of the pmx_gpar: Shared basic graphics parameters |
labels |
|
axis.title |
|
axis.text |
|
ranges |
|
is.smooth |
|
smooth |
|
is.band |
|
band |
|
is.draft |
|
draft |
|
is.identity_line |
|
identity_line |
|
scale_x_log10 |
|
scale_y_log10 |
|
color.scales |
|
... |
others graphics parameters passed :
distrib parameters |
ctr |
pmx controller |
Value
ggplot2 object
Examples
# *************** basic use ***************** ------
ctr <- theophylline()
## boxplot variation
p <- ctr %>% pmx_plot_eta_box()
## histogram variation
p <- ctr %>% pmx_plot_eta_hist()
# update graphical parameter ----------------------
## add jitter
ctr %>%
pmx_plot_eta_hist(is.jitter = TRUE, jitter = list(alpha = 0.4, color = "red"))
## remove shrinkage
ctr %>%
pmx_plot_eta_hist(is.shrink = FALSE)
## update histogram graphical parameters
ctr %>%
pmx_plot_eta_hist(
histogram = list(
color = NA,
position = "fill",
binwidth = 1 / 100
)
)
# stratification ----------------------------------
## categorical stratification color parameter
ctr %>% pmx_plot_eta_hist(is.jitter = TRUE, strat.facet = ~STUD, strat.color = ~SEX)
## categorical stratification facetting
ctr %>% pmx_plot_eta_hist(strat.facet = ~SEX)
## using formula categorical stratification facetting
ctr %>% pmx_plot_eta_hist(
strat.facet = STUD ~ SEX,
shrink = pmx_shrink(hjust = 0.5)
)
# subsetting --------------------------------------
## select a set of random effect
ctr %>% pmx_plot_eta_hist(filter = EFFECT %in% c("ka", "Cl"))
## filter and stratify by facets
ctr %>% pmx_plot_eta_hist(
filter = EFFECT %in% c("ka", "Cl"), strat.facet = ~SEX
)
ctr %>% pmx_plot_eta_hist(
filter = EFFECT %in% c("ka", "Cl"), strat.facet = ~SEX
)