| regressorsMean {gets} | R Documentation |
Create the regressors of the mean equation
Description
The function generates the regressors of the mean equation in an arx model. The returned value is a matrix with the regressors and, by default, the regressand in column one. By default, observations (rows) with missing values are removed in the beginning and the end with na.trim, and the returned matrix is a zoo object.
Usage
regressorsMean(y, mc = FALSE, ar = NULL, ewma = NULL, mxreg = NULL,
prefix="m", return.regressand = TRUE, return.as.zoo = TRUE, na.trim = TRUE,
na.omit=FALSE)
Arguments
y |
numeric vector, time-series or |
mc |
logical. |
ar |
either |
ewma |
either |
mxreg |
either |
prefix |
character, possibly of length zero, e.g. |
return.regressand |
logical. |
return.as.zoo |
|
na.trim |
|
na.omit |
|
Value
A matrix, by default of class zoo, with the regressand as column one (the default).
Author(s)
Genaro Sucarrat, http://www.sucarrat.net/
References
Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44. DOI: https://www.jstatsoft.org/article/view/v086i03
See Also
arx, isat, regressorsVariance, zoo, eqwma, na.trim and na.trim.
Examples
##generate some data:
y <- rnorm(10) #regressand
x <- matrix(rnorm(10*5), 10, 5) #regressors
##create regressors (examples):
regressorsMean(y, mxreg=x)
regressorsMean(y, mxreg=x, return.regressand=FALSE)
regressorsMean(y, mc=TRUE, ar=1:3, mxreg=x)
regressorsMean(log(y^2), mc=TRUE, ar=c(2,4))
##let y and x be time-series:
y <- ts(y, frequency=4, end=c(2018,4))
x <- ts(x, frequency=4, end=c(2018,4))
regressorsMean(y, mxreg=x)
regressorsMean(y, mc=TRUE, ar=1:3, mxreg=x)
regressorsMean(log(y^2), mc=TRUE, ar=c(2,4))
##missing values (NA):
y[1] <- NA
x[10,3] <- NA
regressorsMean(y, mxreg=x)
regressorsMean(y, mxreg=x, na.trim=FALSE)