mvrnormsim {gets} | R Documentation |
Simulate from a Multivariate Normal Distribution
Description
Produces one or more samples from the specified multivariate normal distribution. Used
in
outlierscaletest
.
Usage
mvrnormsim(n = 1, mu, Sigma, tol = 1e-6, empirical = FALSE)
Arguments
n |
the number of samples required. |
mu |
a vector giving the means of the variables. |
Sigma |
a positive-definite symmetric matrix specifying the covariance matrix of the variables. |
tol |
tolerance (relative to largest variance) for numerical lack of positive-definiteness in Sigma. |
empirical |
logical. If true, mu and Sigma specify the empirical not population mean and covariance matrix. |
Details
Original function mvrnorm
developed by Venables, W. N. & Ripley. in package MASS
, https://CRAN.R-project.org/package=MASS.
Value
If n = 1 a vector of the same length as mu, otherwise an n by length(mu) matrix with one sample in each row.
Author(s)
Venables, W. N. & Ripley, with modifications by Felix Pretis, https://felixpretis.climateeconometrics.org/
References
Venables, W. N. & Ripley, B. D. (2019): 'MASS: Support Functions and Datasets for Venables and Ripley's MASS'. https://CRAN.R-project.org/package=MASS
Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0
See Also
Examples
Sigma <- matrix(c(3,2,1,7),2,2)
mvrnormsim(n=2, mu=c(1,2), Sigma)