larch {gets} | R Documentation |
Estimate a heterogeneous log-ARCH-X model
Description
The function larch()
estimates a heterogeneous log-ARCH-X model, which is a generalisation of the dynamic log-variance model in Pretis, Reade and Sucarrat (2018). Internally, estimation is undertaken by a call to larchEstfun
. The log-variance specification can contain log-ARCH terms, log-HARCH terms, asymmetry terms ('leverage'), the log of volatility proxies made up of past returns and other covariates ('X'), for example Realised Volatility (RV), volume or the range.
Usage
larch(e, vc=TRUE, arch = NULL, harch = NULL, asym = NULL, asymind = NULL,
log.ewma = NULL, vxreg = NULL, zero.adj = NULL,
vcov.type = c("robust", "hac"), qstat.options = NULL,
normality.JarqueB = FALSE, tol = 1e-07, singular.ok = TRUE, plot = NULL)
Arguments
e |
|
vc |
|
arch |
either |
harch |
either |
asym |
either |
asymind |
either |
log.ewma |
either |
vxreg |
either |
zero.adj |
|
vcov.type |
|
qstat.options |
|
normality.JarqueB |
|
tol |
|
singular.ok |
|
plot |
|
Details
No details for the moment
Value
A list of class 'larch'
Author(s)
Genaro Sucarrat: https://www.sucarrat.net/
References
G. Ljung and G. Box (1979): 'On a Measure of Lack of Fit in Time Series Models'. Biometrika 66, pp. 265-270
F. Corsi (2009): 'A Simple Approximate Long-Memory Model of Realized Volatility', Journal of Financial Econometrics 7, pp. 174-196
C. Jarque and A. Bera (1980): 'Efficient Tests for Normality, Homoscedasticity and Serial Independence'. Economics Letters 6, pp. 255-259. doi:10.1016/0165-1765(80)90024-5
U. Muller, M. Dacorogna, R. Dave, R. Olsen, O. Pictet and J. von Weizsacker (1997): 'Volatilities of different time resolutions - analyzing the dynamics of market components'. Journal of Empirical Finance 4, pp. 213-239
F. Pretis, J. Reade and G. Sucarrat (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44. doi:10.18637/jss.v086.i03
H. White (1980): 'A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity', Econometrica 48, pp. 817-838.
W.K. Newey and K.D. West (1987): 'A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix', Econometrica 55, pp. 703-708.
See Also
Methods and extraction functions (mostly S3 methods): coef.larch
, ES
, fitted.larch
, gets.larch
,
logLik.larch
, nobs.larch
, plot.larch
, predict.larch
, print.larch
,
residuals.larch
, summary.larch
, VaR
, toLatex.larch
and vcov.arx
Examples
##Simulate some data:
set.seed(123)
e <- rnorm(40)
x <- matrix(rnorm(40*2), 40, 2)
##estimate a log-variance specification with a log-ARCH(4)
##structure:
larch(e, arch=1:4)
##estimate a log-variance specification with a log-ARCH(4)
##structure, a log-HARCH(5) term and a first-order asymmetry/leverage
##term:
larch(e, arch=1:4, harch=5, asym=1)
##estimate a log-variance specification with a log-ARCH(4)
##structure, an asymmetry/leverage term, a 10-period log(EWMA) as
##volatility proxy, and the log of the squareds of the conditioning
##regressors in the log-variance specification:
larch(e, arch=1:4, asym=1, log.ewma=list(length=10), vxreg=log(x^2))