isatloop {gets} | R Documentation |
Repeated Impulse Indicator Saturation
Description
Runs isat
repeatedly at pre-specified significance levels to yield multiple iterations used in
outlierscaletest
.
Usage
isatloop(num=c(seq(from=20, to=1, by=-1)), t.pval.spec = FALSE,
print=FALSE, y, ar=NULL, iis=TRUE, sis=FALSE, ...)
Arguments
num |
numeric, target expected number of outliers under the null hypothesis, or target proportion of outliers if |
t.pval.spec |
logical, if |
print |
logical, if |
y |
numeric vector, time-series or |
ar |
integer vector, say, c(2,4) or 1:4. The AR-lags to include in the mean specification |
iis |
logical, whether to use |
sis |
logical, whether to use |
... |
any argument from |
Details
The function repeatedly runs isat
detecting outliers in a model of y
at different chosen target levels of significance speciefied in num
. The output of this function is used as the input for the outlierscaletest
function. All additional arguments from isat
can be passed to isatloop
.
Value
Returns a list of two items. The first item is the number of observations. The second item is a dataframe containing the expected and observed proportion (and number of outliers) for each specified significance level of selection.
Author(s)
Felix Pretis, https://felixpretis.climateeconometrics.org/
References
Jiao, X. & Pretis, F. (2019). Testing the Presence of Outliers in Regression Models. Discussion Paper.
Pretis, F., Reade, J., & Sucarrat, G. (2018). Automated General-to-Specific (GETS) regression modeling and indicator saturation methods for the detection of outliers and structural breaks. Journal of Statistical Software, 86(3).
See Also
Examples
###Repeated isat models using the Nile dataset
### where p-values are chosen such that the expected number of outliers under the null
### corresponds to 1, 2, 3, 4 and 5.
nile <- as.zoo(Nile)
isat.nile.loop <- isatloop(y=nile, iis=TRUE, num=c(1,2, 3, 4, 5))