gmm {gets} | R Documentation |
Generalised Method of Moment (GMM) estimation of linear models
Description
Generalised Method of Moment (GMM) estimation of linear models with either ordinary (homoscedastic error) or robust (heteroscedastic error) coefficient-covariance, see Hayashi (2000) chapter 3.
Usage
gmm(y, x, z, tol = .Machine$double.eps,
weighting.matrix = c("efficient", "2sls", "identity"),
vcov.type = c("ordinary", "robust"))
Arguments
y |
numeric vector, the regressand |
x |
numeric matrix, the regressors |
z |
numeric matrix, the instruments |
tol |
numeric value. The tolerance for detecting linear dependencies in the columns of the matrices that are inverted, see the |
weighting.matrix |
a character that determines the weighting matrix to bee used, see "details" |
vcov.type |
a character that determines the expression for the coefficient-covariance, see "details" |
Details
weighting.matrix = "identity"
corresponds to the Instrumental Variables (IV) estimator, weighting.matrix = "2sls"
corresponds to the 2 Stage Least Squares (2SLS) estimator, whereas weighting.matrix = "efficient"
corresponds to the efficient GMM estimator, see chapter 3 in Hayashi(2000).
vcov.type = "ordinary"
returns the ordinary expression for the coefficient-covariance, which is valid under conditionally homoscedastic errors. vcov.type = "robust"
returns an expression that is also valid under conditional heteroscedasticity, see chapter 3 in Hayashi (2000).
Value
A list with, amongst other, the following items:
n |
number of observations |
k |
number of regressors |
df |
degrees of freedom, i.e. n-k |
coefficients |
a vector with the coefficient estimates |
fit |
a vector with the fitted values |
residuals |
a vector with the residuals |
residuals2 |
a vector with the squared residuals |
rss |
the residual sum of squares |
sigma2 |
the regression variance |
vcov |
the coefficient-covariance matrix |
logl |
the normal log-likelihood |
Author(s)
Genaro Sucarrat, http://www.sucarrat.net/
References
F. Hayashi (2000): 'Econometrics'. Princeton: Princeton University Press
See Also
Examples
##generate data where regressor is correlated with error:
set.seed(123) #for reproducibility
n <- 100
z1 <- rnorm(n) #instrument
eps <- rnorm(n) #ensures cor(z,eps)=0
x1 <- 0.5*z1 + 0.5*eps #ensures cor(x,eps) is strong
y <- 0.4 + 0.8*x1 + eps #the dgp
cor(x1, eps) #check correlatedness of regressor
cor(z1, eps) #check uncorrelatedness of instrument
x <- cbind(1,x1) #regressor matrix
z <- cbind(1,z1) #matrix with instruments
##efficient gmm estimation:
mymod <- gmm(y, x, z)
mymod$coefficients
##ols (for comparison):
mymod <- ols(y,x)
mymod$coefficients