getsm {gets} | R Documentation |
General-to-Specific (GETS) Modelling of an AR-X model (the mean specification) with log-ARCH-X errors (the log-variance specification).
Description
The starting model, an object of the 'arx' class, is referred to as the General Unrestricted Model (GUM). The getsm
function undertakes multi-path GETS modelling of the mean specification, whereas getsv
does the same for the log-variance specification. The diagnostic tests are undertaken on the standardised residuals, and the keep
option enables regressors to be excluded from possible removal.
Usage
##GETS-modelling of mean specification:
getsm(object, t.pval=0.05, wald.pval=t.pval, vcov.type=NULL,
do.pet=TRUE, ar.LjungB=list(lag=NULL, pval=0.025),
arch.LjungB=list(lag=NULL, pval=0.025), normality.JarqueB=NULL,
user.diagnostics=NULL, info.method=c("sc","aic","aicc", "hq"),
gof.function=NULL, gof.method=NULL, keep=NULL, include.gum=FALSE,
include.1cut=TRUE, include.empty=FALSE, max.paths=NULL, tol=1e-07,
turbo=FALSE, print.searchinfo=TRUE, plot=NULL, alarm=FALSE)
##GETS modelling of log-variance specification:
getsv(object, t.pval=0.05, wald.pval=t.pval,
do.pet=TRUE, ar.LjungB=list(lag=NULL, pval=0.025),
arch.LjungB=list(lag=NULL, pval=0.025), normality.JarqueB=NULL,
user.diagnostics=NULL, info.method=c("sc","aic","aicc","hq"),
gof.function=NULL, gof.method=NULL, keep=c(1), include.gum=FALSE,
include.1cut=TRUE, include.empty=FALSE, max.paths=NULL, tol=1e-07,
turbo=FALSE, print.searchinfo=TRUE, plot=NULL, alarm=FALSE)
Arguments
object |
an object of class 'arx' |
t.pval |
numeric value between 0 and 1. The significance level used for the two-sided regressor significance t-tests |
wald.pval |
numeric value between 0 and 1. The significance level used for the Parsimonious Encompassing Tests (PETs). By default, it is the same as |
vcov.type |
the type of variance-covariance matrix used. If |
do.pet |
logical. If |
ar.LjungB |
a |
arch.LjungB |
a |
normality.JarqueB |
a value between 0 and 1, or |
user.diagnostics |
|
info.method |
character string, "sc" (default), "aic" or "hq", which determines the information criterion to be used when selecting among terminal models. The abbreviations are short for the Schwarz or Bayesian information criterion (sc), the Akaike information criterion (aic) and the Hannan-Quinn (hq) information criterion |
gof.function |
|
gof.method |
|
keep |
the regressors to be excluded from removal in the specification search. Note that |
include.gum |
logical. If |
include.1cut |
logical. If |
include.empty |
logical. If |
max.paths |
|
tol |
numeric value. The tolerance for detecting linear dependencies in the columns of the variance-covariance matrix when computing the Wald-statistic used in the Parsimonious Encompassing Tests (PETs), see the |
turbo |
logical. If |
print.searchinfo |
logical. If |
plot |
|
alarm |
logical. If |
Details
For an overview, see Pretis, Reade and Sucarrat (2018): doi:10.18637/jss.v086.i03.
The arguments user.diagnostics
and gof.function
enable the specification of user-defined diagnostics and a user-defined goodness-of-fit function. For the former, see the documentation of diagnostics
. For the latter, the principles of the same arguments in getsFun
are followed, see its documentation under "Details", and Sucarrat (2020): https://journal.r-project.org/archive/2021/RJ-2021-024/.
Value
A list of class 'gets'
Author(s)
Genaro Sucarrat, http://www.sucarrat.net/
References
C. Jarque and A. Bera (1980): 'Efficient Tests for Normality, Homoscedasticity and Serial Independence'. Economics Letters 6, pp. 255-259. doi:10.1016/0165-1765(80)90024-5
G. Ljung and G. Box (1979): 'On a Measure of Lack of Fit in Time Series Models'. Biometrika 66, pp. 265-270
Felix Pretis, James Reade and Genaro Sucarrat (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44. doi:10.18637/jss.v086.i03
Genaro Sucarrat (2020): 'User-Specified General-to-Specific and Indicator Saturation Methods'. The R Journal 12:2, pages 388-401. https://journal.r-project.org/archive/2021/RJ-2021-024/
See Also
Extraction functions: coef.gets
, fitted.gets
, paths
, plot.gets
, print.gets
,
residuals.gets
, summary.gets
, terminals
, vcov.gets
Related functions: arx
, eqwma
, leqwma
, zoo
, getsFun
, qr.solve
Examples
##Simulate from an AR(1):
set.seed(123)
y <- arima.sim(list(ar=0.4), 80)
##Simulate four independent Gaussian regressors:
xregs <- matrix(rnorm(2*80), 80, 2)
##estimate an AR(2) with intercept and four conditioning
##regressors in the mean, and a log-ARCH(3) with log(xregs^2) as
##regressors in the log-variance:
gum01 <- arx(y, mc=TRUE, ar=1:2, mxreg=xregs, arch=1:3,
vxreg=log(xregs^2))
##GETS model selection of the mean:
meanmod01 <- getsm(gum01)
##GETS model selection of the log-variance:
varmod01 <- getsv(gum01)
##GETS model selection of the mean with the mean intercept
##excluded from removal:
meanmod02 <- getsm(gum01, keep=1)
##GETS model selection of the mean with non-default
#serial-correlation diagnostics settings:
meanmod03 <- getsm(gum01, ar.LjungB=list(pval=0.05))
##GETS model selection of the mean with very liberal
##(20 percent) significance levels:
meanmod04 <- getsm(gum01, t.pval=0.2)
##GETS model selection of log-variance with all the
##log-ARCH terms excluded from removal:
varmod03 <- getsv(gum01, keep=2:4)