getsFun {gets} | R Documentation |
General-to-Specific (GETS) modelling function
Description
Auxiliary function (i.e. not intended for the average user) that enables fast and efficient GETS-modelling with user-specified estimators and models, and user-specified diagnostics and goodness-of-fit criteria. The function is called by and relied upon by getsm
, getsv
, isat
and blocksFun
.
Usage
getsFun(y, x, untransformed.residuals=NULL,
user.estimator=list(name="ols"), gum.result=NULL, t.pval=0.05,
wald.pval=t.pval, do.pet=TRUE, ar.LjungB=NULL, arch.LjungB=NULL,
normality.JarqueB=NULL, user.diagnostics=NULL,
gof.function=list(name="infocrit"), gof.method=c("min", "max"),
keep=NULL, include.gum=FALSE, include.1cut=FALSE,
include.empty=FALSE, max.paths=NULL, turbo=FALSE, tol=1e-07,
LAPACK=FALSE, max.regs=NULL, print.searchinfo=TRUE, alarm=FALSE)
Arguments
y |
a numeric vector (with no missing values, i.e. no non-numeric 'holes') |
x |
a |
untransformed.residuals |
|
user.estimator |
a |
gum.result |
a |
t.pval |
|
wald.pval |
|
do.pet |
|
ar.LjungB |
a two element |
arch.LjungB |
a two element |
normality.JarqueB |
|
user.diagnostics |
|
gof.function |
a |
gof.method |
a |
keep |
|
include.gum |
|
include.1cut |
|
include.empty |
|
max.paths |
|
turbo |
|
tol |
numeric value ( |
LAPACK |
currently not used |
max.regs |
|
print.searchinfo |
|
alarm |
|
Details
The value returned by the estimator specified in user.estimator
should be a list
containing at least six items: "coefficients", "df", "vcov", "logl", "n" and "k". The item "coefficients" should be a vector of length NCOL(x)
containing the estimated coefficients. The item named "df" is used to compute the p-values associated with the t-statistics, i.e. coef/std.err. The item named "vcov" contains the (symmetric) coefficient-covariance matrix of the estimated coefficients. The items "logl" (the log-likelihood), "n" (the number of observations) and "k" (the number of estimated parameters; not necessarily equal to the number of coefficients) are used to compute the information criterion. Finally, the estimator MUST be able to handle empty regressor-matrices (i.e. is.null(x)=TRUE
or NCOL(x)=0
). In this case, then the first three items (i.e. "coefficients", "df" and "vcov") can - and should - be NULL
.
The argument user.estimator
enables the user to specify an estimator that differs from the default (ols
). To do this, the argument should be a list with at least one entry, name (of class character), that contains the name of the user-defined function. The call to this function is executed with do.call
, whose default value on envir
is parent.frame()
. Usually, this will be the global environment (.GlobalEnv
), but it can be changed by adding an entry named envir
to the list that indicates where the user-defined function resides.
The argument user.diagnostics
enables the user to specify additional - or alternative - diagnostics, see diagnostics
.
The argument gof.function
enables the user to specify a goodness-of-fit function that differs from the default (infocrit
). The principles to follow are the same as that of user.estimator
: The argument should be a list
with at least one entry, name, that contains the name of the user-defined function, additional entries in the list are passed on to the user-specified goodness-of-fit function, and optionally an entry named envir
may indicate where the user-defined function resides.
Value
A list
with the results of the specification search.
Author(s)
Genaro Sucarrat, http://www.sucarrat.net/
References
C. Jarque and A. Bera (1980): 'Efficient Tests for Normality, Homoscedasticity and Serial Independence'. Economics Letters 6, pp. 255-259
G. Ljung and G. Box (1979): 'On a Measure of Lack of Fit in Time Series Models'. Biometrika 66, pp. 265-270
F. Pretis, J. Reade and G. Sucarrat (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44
G. sucarrat (2019): 'User-Specified General-to-Specific and Indicator Saturation Methods', Munich Personal RePEc Archive: https://mpra.ub.uni-muenchen.de/96653/
See Also
ols
, diagnostics
, infocrit
, getsv
Examples
##aim: do gets on the x-part (i.e. the covariates) of an arma-x model.
##create the user-defined estimator (essentially adding, renaming
##and re-organising the items returned by the estimator):
myEstimator <- function(y, x)
{
tmp <- arima(y, order=c(1,0,1), xreg=x)
#rename and re-organise:
result <- list()
result$coefficients <- tmp$coef[-c(1:3)]
result$vcov <- tmp$var.coef
result$vcov <- result$vcov[-c(1:3),-c(1:3)]
result$logl <- tmp$loglik
result$n <- tmp$nobs
result$k <- NCOL(x)
result$df <- result$n - result$k
return(result)
}
##generate some data:
##a series w/structural break and eleven step-dummies near the break
set.seed(123)
eps <- arima.sim(list(ar=0.4, ma=0.1), 60)
x <- coredata(sim(eps, which.ones=25:35)) #eleven step-dummies
y <- 4*x[,"sis30"] + eps #create shift upwards at observation 30
plot(y)
##estimate the gum and then do gets in a single step:
##getsFun(y, x, user.estimator=list(name="myEstimator"))
##estimate the gum and then do gets in two steps:
#mygum <- myEstimator(y, x)
##getsFun(y, x, user.estimator=list(name="myEstimator"), gum.result=mygum)