gets.larch {gets} | R Documentation |
General-to-Specific (GETS) Modelling of a heterogeneous log-ARCH-X model
Description
The starting model, an object of the 'larch' class (see larch
, is referred to as the General Unrestricted Model (GUM). The gets.larch()
function undertakes multi-path GETS modelling of the log-variance specification. The diagnostic tests are undertaken on the standardised residuals, and the keep
option enables regressors to be excluded from possible removal.
Usage
## S3 method for class 'larch'
gets(x, t.pval=0.05, wald.pval=t.pval, do.pet=TRUE,
ar.LjungB=NULL, arch.LjungB=NULL, normality.JarqueB=NULL,
user.diagnostics=NULL, info.method=c("sc", "aic", "aicc", "hq"),
gof.function=NULL, gof.method=NULL, keep=c(1), include.gum=FALSE,
include.1cut=TRUE, include.empty=FALSE, max.paths=NULL, tol=1e-07,
turbo=FALSE, print.searchinfo=TRUE, plot=NULL, alarm=FALSE, ...)
Arguments
x |
an object of class 'larch' |
t.pval |
numeric value between 0 and 1. The significance level used for the two-sided regressor significance t-tests |
wald.pval |
numeric value between 0 and 1. The significance level used for the Parsimonious Encompassing Tests (PETs). By default, |
do.pet |
logical. If |
ar.LjungB |
|
arch.LjungB |
|
normality.JarqueB |
|
user.diagnostics |
|
info.method |
character string, "sc" (default), "aic", "aicc" or "hq", which determines the information criterion to be used when selecting among terminal models. See |
gof.function |
|
gof.method |
|
keep |
the regressors to be kept (i.e. excluded from removal) in the specification search. Currently, |
include.gum |
logical. If |
include.1cut |
logical. If |
include.empty |
logical. If |
max.paths |
|
tol |
numeric value. The tolerance for detecting linear dependencies in the columns of the variance-covariance matrix when computing the Wald-statistic used in the Parsimonious Encompassing Tests (PETs), see the |
turbo |
logical. If |
print.searchinfo |
logical. If |
plot |
|
alarm |
logical. If |
... |
additional arguments |
Details
See Pretis, Reade and Sucarrat (2018): doi:10.18637/jss.v086.i03, and Sucarrat (2020): https://journal.r-project.org/archive/2021/RJ-2021-024/.
The arguments user.diagnostics
and gof.function
enable the specification of user-defined diagnostics and a user-defined goodness-of-fit function. For the former, see the documentation of diagnostics
. For the latter, the principles of the same arguments in getsFun
are followed, see its documentation under "Details", and Sucarrat (2020): https://journal.r-project.org/archive/2021/RJ-2021-024/.
Value
A list of class 'larch', see larch
, with additional information about the GETS modelling
Author(s)
Genaro Sucarrat, http://www.sucarrat.net/
References
C. Jarque and A. Bera (1980): 'Efficient Tests for Normality, Homoscedasticity and Serial Independence'. Economics Letters 6, pp. 255-259. doi:10.1016/0165-1765(80)90024-5
G. Ljung and G. Box (1979): 'On a Measure of Lack of Fit in Time Series Models'. Biometrika 66, pp. 265-270
Felix Pretis, James Reade and Genaro Sucarrat (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44. doi:10.18637/jss.v086.i03
Genaro Sucarrat (2020): 'User-Specified General-to-Specific and Indicator Saturation Methods'. The R Journal 12:2, pages 388-401. https://journal.r-project.org/archive/2021/RJ-2021-024/
See Also
Methods and extraction functions (mostly S3 methods): coef.larch
, ES
, fitted.larch
, gets.larch
,
logLik.larch
, nobs.larch
, plot.larch
, predict.larch
, print.larch
,
residuals.larch
, summary.larch
, VaR
, toLatex.larch
and vcov.arx
Related functions: eqwma
, leqwma
, regressorsVariance
, zoo
, getsFun
, qr.solve
Examples
##Simulate some data:
set.seed(123)
e <- rnorm(40)
x <- matrix(rnorm(4*40), 40, 4)
##estimate a log-ARCH(3) with asymmetry and log(x^2) as regressors:
gum <- larch(e, arch=1:3, asym=1, vxreg=log(x^2))
##GETS modelling of the log-variance:
simple <- gets(gum)
##GETS modelling with intercept and log-ARCH(1) terms
##excluded from removal:
simple <- gets(gum, keep=c(1,2))
##GETS modelling with non-default autocorrelation
##diagnostics settings:
simple <- gets(gum, ar.LjungB=list(pval=0.05))
##GETS modelling with very liberal (40%) significance level:
simple <- gets(gum, t.pval=0.4)