| calcqualityIndexes {geocmeans} | R Documentation | 
Quality indexes
Description
calculate several clustering quality indexes (some of them come from fclust package)
Usage
calcqualityIndexes(
  data,
  belongmatrix,
  m,
  indices = c("Silhouette.index", "Partition.entropy", "Partition.coeff",
    "XieBeni.index", "FukuyamaSugeno.index", "Explained.inertia")
)
Arguments
| data | The original dataframe used for the classification (n*p) | 
| belongmatrix | A membership matrix (n*k) | 
| m | The fuzziness parameter used for the classification | 
| indices | A character vector with the names of the indices to calculate, default is : c("Silhouette.index", "Partition.entropy", "Partition.coeff", "XieBeni.index", "FukuyamaSugeno.index", "Explained.inertia"). Other available indices are : "DaviesBoulin.index", "CalinskiHarabasz.index", "GD43.index", "GD53.index" and "Negentropy.index" | 
Value
A named list with with the values of the required indices
Examples
data(LyonIris)
AnalysisFields <-c("Lden","NO2","PM25","VegHautPrt","Pct0_14","Pct_65","Pct_Img",
"TxChom1564","Pct_brevet","NivVieMed")
dataset <- sf::st_drop_geometry(LyonIris[AnalysisFields])
queen <- spdep::poly2nb(LyonIris,queen=TRUE)
Wqueen <- spdep::nb2listw(queen,style="W")
result <- SFCMeans(dataset, Wqueen,k = 5, m = 1.5, alpha = 1.5, standardize = TRUE)
calcqualityIndexes(result$Data,result$Belongings, m=1.5)
[Package geocmeans version 0.3.4 Index]