bf2new {geoBayes} | R Documentation |
Compute the Bayes factors at new points
Description
Compute the Bayes factors.
Usage
bf2new(bf1obj, linkp, phi, omg, kappa, useCV = TRUE)
Arguments
bf1obj |
Output from the function |
linkp , phi , omg , kappa |
Optional scalar or vector or
|
useCV |
Whether to use control variates for finer corrections. |
Details
Computes the Bayes factors using the importance weights at the new
points. The new points are taken from the grid derived by
expanding the parameter values inputted. The arguments
linkp
phi
omg
kappa
correspond to the
link function, spatial range, relative nugget, and correlation
function parameters respectively.
Value
An array of size length(linkp) * length(phi) *
length(omg) * length(kappa)
containing the Bayes factors for each
combination of the parameters.
References
Doss, H. (2010). Estimation of large families of Bayes factors from Markov chain output. Statistica Sinica, 20(2), 537.
Roy, V., Evangelou, E., and Zhu, Z. (2015). Efficient estimation and prediction for the Bayesian spatial generalized linear mixed model with flexible link functions. Biometrics, 72(1), 289-298.
Examples
## Not run:
data(rhizoctonia)
### Define the model
corrf <- "spherical"
kappa <- 0
ssqdf <- 1
ssqsc <- 1
betm0 <- 0
betQ0 <- .01
family <- "binomial.probit"
### Skeleton points
philist <- c(100, 140, 180)
omglist <- c(.5, 1)
parlist <- expand.grid(linkp=0, phi=philist, omg=omglist, kappa = kappa)
### MCMC sizes
Nout <- 100
Nthin <- 1
Nbi <- 0
### Take MCMC samples
runs <- list()
for (i in 1:NROW(parlist)) {
runs[[i]] <- mcsglmm(Infected ~ 1, family, rhizoctonia, weights = Total,
atsample = ~ Xcoord + Ycoord,
Nout = Nout, Nthin = Nthin, Nbi = Nbi,
betm0 = betm0, betQ0 = betQ0,
ssqdf = ssqdf, ssqsc = ssqsc,
phi = parlist$phi[i], omg = parlist$omg[i],
linkp = parlist$linkp[i], kappa = parlist$kappa[i],
corrfcn = corrf,
corrtuning=list(phi = 0, omg = 0, kappa = 0))
}
bf <- bf1skel(runs)
bfall <- bf2new(bf, phi = seq(100, 200, 10), omg = seq(0, 2, .2))
plotbf2(bfall, c("phi", "omg"))
## End(Not run)