plot.gensvm {gensvm} | R Documentation |
Plot the simplex space of the fitted GenSVM model
Description
This function creates a plot of the simplex space for a fitted GenSVM model and the given data set. This function works for dataset with two or three classes. For more than 3 classes, the simplex space is too high dimensional to easily visualize.
Usage
## S3 method for class 'gensvm'
plot(
x,
labels,
newdata = NULL,
with.margins = TRUE,
with.shading = TRUE,
with.legend = TRUE,
center.plot = TRUE,
xlim = NULL,
ylim = NULL,
...
)
Arguments
x |
A fitted |
labels |
the labels to color points with. If this is omitted the predicted labels are used. |
newdata |
the dataset to plot. If this is NULL the training data is used. |
with.margins |
plot the margins |
with.shading |
show shaded areas for the class regions |
with.legend |
show the legend for the class labels |
center.plot |
ensure that the boundaries and margins are always visible in the plot |
xlim |
allows the user to force certain plot limits. If set, these bounds will be used for the horizontal axis. |
ylim |
allows the user to force certain plot limits. If set, these bounds will be used for the vertical axis and the value of center.plot will be ignored |
... |
further arguments are passed to the builtin plot() function |
Value
returns the object passed as input
Author(s)
Gerrit J.J. van den Burg, Patrick J.F. Groenen
Maintainer: Gerrit J.J. van den Burg <gertjanvandenburg@gmail.com>
References
Van den Burg, G.J.J. and Groenen, P.J.F. (2016). GenSVM: A Generalized Multiclass Support Vector Machine, Journal of Machine Learning Research, 17(225):1–42. URL https://jmlr.org/papers/v17/14-526.html.
See Also
plot.gensvm.grid
, predict.gensvm
,
gensvm
, gensvm-package
Examples
x <- iris[, -5]
y <- iris[, 5]
# train the model
fit <- gensvm(x, y)
# plot the simplex space
plot(fit)
# plot and use the true colors (easier to spot misclassified samples)
plot(fit, y)
# plot only misclassified samples
x.mis <- x[predict(fit) != y, ]
y.mis.true <- y[predict(fit) != y]
plot(fit, newdata=x.mis)
plot(fit, y.mis.true, newdata=x.mis)
# plot a 2-d model
xx <- x[y %in% c('versicolor', 'virginica'), ]
yy <- y[y %in% c('versicolor', 'virginica')]
fit <- gensvm(xx, yy, kernel='rbf', max.iter=1000)
plot(fit)