| plot.gensvm {gensvm} | R Documentation | 
Plot the simplex space of the fitted GenSVM model
Description
This function creates a plot of the simplex space for a fitted GenSVM model and the given data set. This function works for dataset with two or three classes. For more than 3 classes, the simplex space is too high dimensional to easily visualize.
Usage
## S3 method for class 'gensvm'
plot(
  x,
  labels,
  newdata = NULL,
  with.margins = TRUE,
  with.shading = TRUE,
  with.legend = TRUE,
  center.plot = TRUE,
  xlim = NULL,
  ylim = NULL,
  ...
)
Arguments
x | 
 A fitted   | 
labels | 
 the labels to color points with. If this is omitted the predicted labels are used.  | 
newdata | 
 the dataset to plot. If this is NULL the training data is used.  | 
with.margins | 
 plot the margins  | 
with.shading | 
 show shaded areas for the class regions  | 
with.legend | 
 show the legend for the class labels  | 
center.plot | 
 ensure that the boundaries and margins are always visible in the plot  | 
xlim | 
 allows the user to force certain plot limits. If set, these bounds will be used for the horizontal axis.  | 
ylim | 
 allows the user to force certain plot limits. If set, these bounds will be used for the vertical axis and the value of center.plot will be ignored  | 
... | 
 further arguments are passed to the builtin plot() function  | 
Value
returns the object passed as input
Author(s)
Gerrit J.J. van den Burg, Patrick J.F. Groenen 
Maintainer: Gerrit J.J. van den Burg <gertjanvandenburg@gmail.com>
References
Van den Burg, G.J.J. and Groenen, P.J.F. (2016). GenSVM: A Generalized Multiclass Support Vector Machine, Journal of Machine Learning Research, 17(225):1–42. URL https://jmlr.org/papers/v17/14-526.html.
See Also
plot.gensvm.grid, predict.gensvm, 
gensvm, gensvm-package
Examples
x <- iris[, -5]
y <- iris[, 5]
# train the model
fit <- gensvm(x, y)
# plot the simplex space
plot(fit)
# plot and use the true colors (easier to spot misclassified samples)
plot(fit, y)
# plot only misclassified samples
x.mis <- x[predict(fit) != y, ]
y.mis.true <- y[predict(fit) != y]
plot(fit, newdata=x.mis)
plot(fit, y.mis.true, newdata=x.mis)
# plot a 2-d model
xx <- x[y %in% c('versicolor', 'virginica'), ]
yy <- y[y %in% c('versicolor', 'virginica')]
fit <- gensvm(xx, yy, kernel='rbf', max.iter=1000)
plot(fit)