predict.cube {gdalcubes} | R Documentation |
Model prediction
Description
Apply a trained model on all pixels of a data cube.
Usage
## S3 method for class 'cube'
predict(object, model, ..., output_names = c("pred"), keep_bands = FALSE)
Arguments
object |
a data cube proxy object (class cube) |
model |
model used for prediction (e.g. from |
... |
further arguments passed to the model-specific predict method |
output_names |
optional character vector for output variable(s) |
keep_bands |
logical; keep bands of input data cube, defaults to FALSE, i.e. original bands will be dropped |
Details
The model-specific predict method will be automatically chosen based on the class of the provided model. It aims at supporting
models from the packages tidymodels
, caret
, and simple models as from lm
or glm
.
For multiple output variables or output in form of lists or data.frames, output_names
must be provided and match
names of the columns / items of the result object returned from the underlying predict method. For example,
predictions using tidymodels
return a tibble (data.frame) with columns like .pred_class
(classification case).
This must be explicitly provided as output_names
. Similarly, predict.lm
and the like return lists
if the standard error is requested by the user and output_names
hence should be set to c("fit","se.fit")
.
For more complex cases or when predict expects something else than a data.frame
, this function may not work at all.
Note
This function returns a proxy object, i.e., it will not immediately start any computations.
Examples
# create image collection from example Landsat data only
# if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {
L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)
create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}
v = cube_view(extent=list(left=388941.2, right=766552.4,
bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P3M")
L8.col = image_collection(file.path(tempdir(), "L8.db"))
x = sf::st_read(system.file("ny_samples.gpkg", package = "gdalcubes"))
raster_cube(L8.col, v) |>
select_bands(c("B02","B03","B04","B05")) |>
extract_geom(x) -> train
x$FID = rownames(x)
train = merge(train, x, by = "FID")
train$iswater = as.factor(train$class == "water")
log_model <- glm(iswater ~ B02 + B03 + B04 + B05, data = train, family = "binomial")
raster_cube(L8.col, v) |>
select_bands(c("B02","B03","B04","B05")) |>
predict(model=log_model, type="response") |>
plot(key.pos=1)