mr_forestplot {gap} | R Documentation |
Mendelian Randomization forest plot
Description
Mendelian Randomization forest plot
Usage
mr_forestplot(dat, sm = "", title = "", ...)
Arguments
dat |
A data.frame with outcome id, effect size and standard error. |
sm |
Summary measure such as OR, RR, MD. |
title |
Title of the meta-analysis. |
... |
Other options for meta::forest(). |
Details
This is a wrapper of meta::forest() for multi-outcome Mendelian Randomization. It allows for the flexibility of both binary and continuous outcomes with and without summary level statistics.
Examples
## Not run:
tnfb <- '
"multiple sclerosis" 0.69058600 0.059270400
"systemic lupus erythematosus" 0.76687500 0.079000500
"sclerosing cholangitis" 0.62671500 0.075954700
"juvenile idiopathic arthritis" -1.17577000 0.160293000
"psoriasis" 0.00582586 0.000800016
"rheumatoid arthritis" -0.00378072 0.000625160
"inflammatory bowel disease" -0.14334200 0.025272500
"ankylosing spondylitis" -0.00316852 0.000626225
"hypothyroidism" -0.00432054 0.000987324
"allergic rhinitis" 0.00393075 0.000926002
"IgA glomerulonephritis" -0.32696600 0.105262000
"atopic eczema" -0.00204018 0.000678061
'
require(dplyr)
tnfb <- as.data.frame(scan(file=textConnection(tnfb),what=list("",0,0))) %>%
setNames(c("outcome","Effect","StdErr")) %>%
mutate(outcome=gsub("\\b(^[a-z])","\\U\\1",outcome,perl=TRUE))
# default output
mr_forestplot(tnfb, colgap.forest.left="0.05cm", fontsize=14, leftlabs=c("Outcome","b","SE"),
common=FALSE, random=FALSE, print.I2=FALSE, print.pval.Q=FALSE, print.tau2=FALSE,
spacing=1.6,digits.TE=2,digits.se=2)
# no summary level statistics
mr_forestplot(tnfb, colgap.forest.left="0.05cm", fontsize=14,
leftcols="studlab", leftlabs="Outcome", plotwidth="3inch", sm="OR", rightlabs="ci",
sortvar=tnfb[["Effect"]],
common=FALSE, random=FALSE, print.I2=FALSE, print.pval.Q=FALSE, print.tau2=FALSE,
backtransf=TRUE, spacing=1.6)
# with P values
mr_forestplot(tnfb,colgap.forest.left="0.05cm", fontsize=14,
leftcols=c("studlab"), leftlabs=c("Outcome"),
plotwidth="3inch", sm="OR", sortvar=tnfb[["Effect"]],
rightcols=c("effect","ci","pval"), rightlabs=c("OR","95%CI","P"),
digits=3, digits.pval=2, scientific.pval=TRUE,
common=FALSE, random=FALSE, print.I2=FALSE, print.pval.Q=FALSE, print.tau2=FALSE,
addrow=TRUE, backtransf=TRUE, spacing=1.6)
## End(Not run)
[Package gap version 1.5-3 Index]