fbsize {gap} | R Documentation |
Sample size for family-based linkage and association design
Description
Sample size for family-based linkage and association design
Usage
fbsize(
gamma,
p,
alpha = c(1e-04, 1e-08, 1e-08),
beta = 0.2,
debug = 0,
error = 0
)
Arguments
gamma |
genotype relative risk assuming multiplicative model. |
p |
frequency of disease allele. |
alpha |
Type I error rates for ASP linkage, TDT and ASP-TDT. |
beta |
Type II error rate. |
debug |
verbose output. |
error |
0=use the correct formula,1=the original paper. |
Details
This function implements Risch and Merikangas (1996) statistics evaluating power for family-based linkage (affected sib pairs, ASP) and association design. They are potentially useful in the prospect of genome-wide association studies.
The function calls auxiliary functions sn() and strlen; sn()
contains the necessary thresholds for power calculation while
strlen()
evaluates length of a string (generic).
Value
The returned value is a list containing:
gamma input gamma.
p input p.
n1 sample size for ASP.
n2 sample size for TDT.
n3 sample size for ASP-TDT.
lambdao lambda o.
lambdas lambda s.
Note
extracted from rm.c.
Author(s)
Jing Hua Zhao
References
Risch, N. and K. Merikangas (1996). The future of genetic studies of complex human diseases. Science 273(September): 1516-1517.
Risch, N. and K. Merikangas (1997). Reply to Scott el al. Science 275(February): 1329-1330.
Scott, W. K., M. A. Pericak-Vance, et al. (1997). Genetic analysis of complex diseases. Science 275: 1327.
See Also
Examples
models <- matrix(c(
4.0, 0.01,
4.0, 0.10,
4.0, 0.50,
4.0, 0.80,
2.0, 0.01,
2.0, 0.10,
2.0, 0.50,
2.0, 0.80,
1.5, 0.01,
1.5, 0.10,
1.5, 0.50,
1.5, 0.80), ncol=2, byrow=TRUE)
outfile <- "fbsize.txt"
cat("gamma","p","Y","N_asp","P_A","H1","N_tdt","H2","N_asp/tdt","L_o","L_s\n",
file=outfile,sep="\t")
for(i in 1:12) {
g <- models[i,1]
p <- models[i,2]
z <- fbsize(g,p)
cat(z$gamma,z$p,z$y,z$n1,z$pA,z$h1,z$n2,z$h2,z$n3,z$lambdao,z$lambdas,file=outfile,
append=TRUE,sep="\t")
cat("\n",file=outfile,append=TRUE)
}
table1 <- read.table(outfile,header=TRUE,sep="\t")
nc <- c(4,7,9)
table1[,nc] <- ceiling(table1[,nc])
dc <- c(3,5,6,8,10,11)
table1[,dc] <- round(table1[,dc],2)
unlink(outfile)
# APOE-4, Scott WK, Pericak-Vance, MA & Haines JL
# Genetic analysis of complex diseases 1327
g <- 4.5
p <- 0.15
cat("\nAlzheimer's:\n\n")
fbsize(g,p)
# note to replicate the Table we need set alpha=9.961139e-05,4.910638e-08 and
# beta=0.2004542 or reset the quantiles in fbsize.R