predict.gamlss {gamlss} | R Documentation |
Extract Predictor Values and Standard Errors For New Data In a GAMLSS Model
Description
predict.gamlss
is the GAMLSS specific method which produce predictors for a new data set
for a specified parameter from a GAMLSS objects.
The predict.gamlss
can be used to extract the linear predictors, fitted values and specific terms in the model at new
data values in the same way that the predict.lm()
and predict.glm()
functions can be used for
lm
or glm
objects. Note that linear predictors, fitted values and specific terms in the model at the current
data values can also be extracted using the function lpred()
(which is called from predict if new data is NULL).
Usage
## S3 method for class 'gamlss'
predict(object, what = c("mu", "sigma", "nu", "tau"),
parameter= NULL,
newdata = NULL, type = c("link", "response", "terms"),
terms = NULL, se.fit = FALSE, data = NULL, ...)
predictAll(object, newdata = NULL, type = c("response", "link", "terms"),
terms = NULL, se.fit = FALSE, use.weights = FALSE,
data = NULL, y.value = "median",
set.to = .Machine$double.xmin,
output = c("list","data.frame", "matrix"), ...)
Arguments
object |
a GAMLSS fitted model |
what |
which distribution parameter is required, default |
parameter |
equivalent to |
newdata |
a data frame containing new values for the explanatory variables used in the model |
type |
the default, gets the linear predictor for the specified distribution parameter.
|
terms |
if |
se.fit |
if TRUE the approximate standard errors of the appropriate type are extracted if exist |
use.weights |
if |
data |
the data frame used in the original fit if is not defined in the call |
y.value |
how to get the response values for the |
set.to |
what values the weights for the |
output |
whether the output to be a ‘list’ (default) or a 'matrix' |
... |
for extra arguments |
Details
The predict function assumes that the object given in newdata
is a data frame containing the right x-variables
used in the model. This could possible cause problems if transformed variables are used in the fitting of the original model.
For example, let us assume that a transformation of age is needed in the model i.e. nage<-age^.5
. This could be fitted as
mod<-gamlss(y~cs(age^.5),data=mydata)
or as nage<-age^.5; mod<-gamlss(y~cs(nage), data=mydata)
.
The later could more efficient if the data are in thousands rather in hundreds. In the first case,
the code predict(mod,newdata=data.frame(age=c(34,56)))
would produce the right results.
In the second case a new data frame has to be created containing the old data plus any new transform data. This data frame has to
be declared in the data
option. The option newdata
should
contain a data.frame with the new names and the transformed values in which prediction is required, (see the last example).
Value
A vector or a matrix depending on the options.
Note
This function is under development
Author(s)
Mikis Stasinopoulos
References
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
(see also https://www.gamlss.com/).
See Also
Examples
data(aids)
a<-gamlss(y~poly(x,3)+qrt, family=PO, data=aids) #
newaids<-data.frame(x=c(45,46,47), qrt=c(2,3,4))
ap <- predict(a, newdata=newaids, type = "response")
ap
# now getting all the parameters
predictAll(a, newdata=newaids)
rm(a, ap)
data(abdom)
# transform x
aa<-gamlss(y~cs(x^.5),data=abdom)
# predict at old values
predict(aa)[610]
# predict at new values
predict(aa,newdata=data.frame(x=42.43))
# now transform x first
nx<-abdom$x^.5
aaa<-gamlss(y~cs(nx),data=abdom)
# create a new data frame
newd<-data.frame( abdom, nx=abdom$x^0.5)
# predict at old values
predict(aaa)[610]
# predict at new values
predict(aaa,newdata=data.frame(nx=42.43^.5), data=newd)