Q.stats {gamlss} | R Documentation |
A function to calculate the Q-statistics
Description
This function calculates and prints the Q-statistics (or Z-statistics) which are useful to test normality of the residuals within a range of an independent variable, for example age in centile estimation, see Royston and Wright (2000).
Usage
Q.stats(obj = NULL, xvar = NULL, resid = NULL, xcut.points = NULL, n.inter = 10,
zvals = TRUE, save = TRUE, plot = TRUE, digits.xvar = getOption("digits"),
...)
Arguments
obj |
a GAMLSS object |
xvar |
a unique explanatory variable |
resid |
quantile or standardised residuals can be given here instead of a GAMLSS object in |
xcut.points |
the x-axis cut off points e.g. |
n.inter |
if |
zvals |
if |
save |
whether to save the Q-statistics or not with default equal to |
plot |
whether to plot a visual version of the Q statistics (default is TRUE) |
digits.xvar |
to control the number of digits of the |
... |
for extra arguments |
Details
Note that the function Q.stats
behaves differently depending whether the obj
or the resid
argument is set. The obj
argument produces the Q-statistics (or Z-statistics) table appropriate for centile estimation (therefore it expect a reasonable large number of observations). The argument resid
allows any model residuals, (not necessary GAMLSS), suitable standardised and is appropriate for any size of data. The resulting table contains only the individuals Z-statistics.
Value
A table containing the Q-statistics or Z-statistics. If plot=TRUE
it produces also an graphical representation of the table.
Author(s)
Mikis Stasinopoulos, Bob Rigby with contributions from Elaine Borghie
References
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Royston P. and Wright E. M. (2000) Goodness of fit statistics for the age-specific reference intervals. Statistics in Medicine, 19, pp 2943-2962.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
(see also https://www.gamlss.com/).
See Also
Examples
data(abdom)
h<-gamlss(y~pb(x), sigma.formula=~pb(x), family=BCT, data=abdom)
Q.stats(h,xvar=abdom$x,n.inter=8)
Q.stats(h,xvar=abdom$x,n.inter=8,zvals=FALSE)
Q.stats(resid=resid(h), xvar=abdom$x, n.inter=5)
rm(h)