gamlssInf0to1 {gamlss.inf} | R Documentation |
GAMLSS model for a proportion response variable with point(s) mass at 0 and or 1.
Description
Function gamlssInf0to1()
allows to fit inflated gamlss models when the response variable distribution is defined in the intervals [0,1), (0,1] and [0,1].
The gamlssInf0to1
model for inflated proportion variables is a gamlss
model provided of up to two extra parameters for the mass point(s). In the case of inflation point at zero (one), this is equivalent to fit two separate models, a gamlss model for the (0,1) part, and a logit model for zero (one) vs non-zero (non-one) part. When both zero and one are present, a multinomial model is involved to fit the non-(0,1) part.
Usage
gamlssInf0to1(y = NULL, mu.formula = ~1, sigma.formula = ~1,
nu.formula = ~1,tau.formula = ~1,
xi0.formula = ~1,xi1.formula = ~1, data = NULL,
family = BE, weights = rep(1, length(Y_)),
trace = FALSE, ...)
Arguments
y |
the proportion response variable with inflation at zero and/or one |
mu.formula |
a model formula for |
sigma.formula |
a model formula for |
nu.formula |
a model formula for |
tau.formula |
a model formula for |
xi0.formula |
a model formula for the probability at zero |
xi1.formula |
a model formula for the probability at one |
data |
a data frame containing the variables occurring in the formula. |
family |
any |
weights |
a vector of weights as in gamlss |
trace |
logical, if TRUE information on model estimation will be printed during the fitting |
... |
for extra parameters |
Details
The default family is a Beta distribution (BE), but other (0,1) distributions can be used, e.g. those generated from existing continuous gamlss family distributions by using gen.Family
with link "logit".
Value
returns a gamlssInf0to1
object which has its own methods
Author(s)
Mikis Stasinopoulos, Robert Rigby, Abu Hossain and Marco Enea
References
Hossain, A., Stasinopoulos, M., Rigby, R. and Enea, M. (2015). Centile estimation for a proportion response variable. Statistics in Medicine, doi: 10.1002/sim.6748.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
See Also
gamlss.family
, BEINF
, BE
, BEo
, BEZI
, BEOI
Examples
# 1. An artificial example using simulated data
# Firstly, we use function gen.Family() to create the logit skew
# student t (logitSST) distribution defined in the (0,1) interval,
# and function gen.Inf0to1() to create the 0-inflated logitSST
# distribution defined in [0,1).
gen.Family("SST", "logit")
gen.Inf0to1("logitSST","Zero")
#now we can generate the data and run the model
set.seed(10)
Y <- rlogitSSTInf0(500,mu=0.5,sigma=0.7,nu=0.5,tau=5,xi0=0.5,log=FALSE)
dat <- data.frame(Y)
dat$x <- rnorm(500)
m1 <- gamlssInf0to1(y=Y,mu.formula=~x, sigma.formula=~x,
nu.formula=~x, tau.formula=~x,
xi0.formula=~x,data=dat, family=logitSST)
summary(m1)
# 2. Example of equivalent gamlss models for an inflated-at-1 Beta distribution
Y <- rBEINF1(500,mu=0.5,sigma=0.7,nu=0.5)
m2 <- gamlss(Y~1,sigma.formula=~1,nu.formula=~1,family=BEINF1)
m3.1 <- gamlss(Y[Y<1]~1,sigma.formula=~1,family=BE)
m3.2 <- gamlss(I(Y==1)~1,family=BI)
m4 <- gamlssInf0to1(Y,mu.formula=~1,sigma.formula=~1,xi1=~1,family=BE)
stopifnot(all.equal(deviance(m2),(deviance(m3.1)+deviance(m3.2))),
all.equal(deviance(m2),deviance(m4)))