BE {gamlss.dist} | R Documentation |
The beta distribution for fitting a GAMLSS
Description
The functions BE()
and BEo()
define the beta distribution, a two parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
. BE()
has mean equal to the parameter mu
and sigma
as scale parameter, see below. BEo()
is the original parameterizations of the beta distribution as in dbeta()
with
shape1
=mu and shape2
=sigma.
The functions dBE
and dBEo
, pBE
and pBEo
, qBE
and qBEo
and finally rBE
and rBE
define the density, distribution function, quantile function and random
generation for the BE
and BEo
parameterizations respectively of the beta distribution.
Usage
BE(mu.link = "logit", sigma.link = "logit")
dBE(x, mu = 0.5, sigma = 0.2, log = FALSE)
pBE(q, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)
qBE(p, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)
rBE(n, mu = 0.5, sigma = 0.2)
BEo(mu.link = "log", sigma.link = "log")
dBEo(x, mu = 0.5, sigma = 0.2, log = FALSE)
pBEo(q, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)
qBEo(p, mu = 0.5, sigma = 0.2, lower.tail = TRUE, log.p = FALSE)
Arguments
mu.link |
the |
sigma.link |
the |
x , q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
Details
The standard parametrization of the beta distribution is given as:
f(y|\alpha,\beta)=\frac{1}{B(\alpha, \beta)} y^{\alpha-1}(1-y)^{\beta-1}
for y=(0,1)
, \alpha>0
and \beta>0
.
The first gamlss
implementation the beta distribution is called BEo
, and it is identical to the standard parametrization with
\alpha=\mu
and \beta = \sigma
, see pp. 460-461 of Rigby et al. (2019):
f(y|\mu,\sigma)=\frac{1}{B(\mu, \sigma)} y^{\mu-1}(1-y)^{\sigma-1}
for y=(0,1)
, \mu>0
and \sigma>0
. The problem with this parametrization is that with mean E(y)=\mu/(\mu+\sigma)
it is not convenient for modelling the response y as function of the explanatory variables. The second parametrization, BE
see pp. 461-463 of Rigby et al. (2019), is using
\mu=\frac{\alpha}{\alpha+\beta}
\sigma= \frac{1}{\alpha+\beta+1)^{1/2}}
(of the standard parametrization) and it is more convenient because
\mu
now is the mean with variance equal to Var(y)=\sigma^2 \mu (1-\mu)
. Note however that 0<\mu<1
and 0<\sigma<1
.
Value
BE()
and BEo()
return a gamlss.family
object which can be used to fit a beta distribution in the gamlss()
function.
Note
Note that for BE
, mu
is the mean and sigma
a scale parameter contributing to the variance of y
Author(s)
Bob Rigby and Mikis Stasinopoulos
References
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also https://www.gamlss.com/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, doi:10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. doi:10.1201/b21973
(see also https://www.gamlss.com/).
See Also
gamlss.family
, BE
, LOGITNO
, GB1
, BEINF
Examples
BE()# gives information about the default links for the beta distribution
dat1<-rBE(100, mu=.3, sigma=.5)
hist(dat1)
#library(gamlss)
# mod1<-gamlss(dat1~1,family=BE) # fits a constant for mu and sigma
#fitted(mod1)[1]
#fitted(mod1,"sigma")[1]
plot(function(y) dBE(y, mu=.1 ,sigma=.5), 0.001, .999)
plot(function(y) pBE(y, mu=.1 ,sigma=.5), 0.001, 0.999)
plot(function(y) qBE(y, mu=.1 ,sigma=.5), 0.001, 0.999)
plot(function(y) qBE(y, mu=.1 ,sigma=.5, lower.tail=FALSE), 0.001, .999)
dat2<-rBEo(100, mu=1, sigma=2)
#mod2<-gamlss(dat2~1,family=BEo) # fits a constant for mu and sigma
#fitted(mod2)[1]
#fitted(mod2,"sigma")[1]