galamm_control {galamm} | R Documentation |
Control values for galamm fit
Description
This function can be called for controling the optimization
procedure used when fitting GALAMMs using galamm
.
Usage
galamm_control(
optim_control = list(),
method = c("L-BFGS-B", "Nelder-Mead"),
maxit_conditional_modes = 10,
pirls_tol_abs = 0.01,
reduced_hessian = FALSE
)
Arguments
optim_control |
List containing optimization parameters. If |
method |
Character string defining the algorithm to be used for
maximizing the marginal log-likelihood. The default is |
maxit_conditional_modes |
Maximum number of iterations in penalized
iteratively reweighted least squares algorithm. Ignored if |
pirls_tol_abs |
Absolute convergence criterion for penalized iteratively reweighted least squares algorithm. Defaults to 0.01, which means that when the reduction in marginal likelihood between two iterations is below 0.01, the iterations stop. |
reduced_hessian |
Logical value. Defaults to |
Value
Object of class galamm_control
, which typically will be
provided as an argument to galamm
.
References
Bates DM, Mächler M, Bolker B, Walker S (2015). “Fitting Linear Mixed-Effects Models Using Lme4.” Journal of Statistical Software, 67(1), 1–48. ISSN 1548-7660, doi:10.18637/jss.v067.i01.
BROYDEN CG (1970). “The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations.” IMA Journal of Applied Mathematics, 6(1), 76–90. ISSN 0272-4960, doi:10.1093/imamat/6.1.76.
Byrd RH, Lu P, Nocedal J, Zhu C (1995). “A Limited Memory Algorithm for Bound Constrained Optimization.” SIAM Journal on Scientific Computing, 16(5), 1190–1208. ISSN 1064-8275, doi:10.1137/0916069.
Fletcher R (1970). “A New Approach to Variable Metric Algorithms.” The Computer Journal, 13(3), 317–322. ISSN 0010-4620, doi:10.1093/comjnl/13.3.317.
Goldfarb D (1970). “A Family of Variable-Metric Methods Derived by Variational Means.” Mathematics of Computation, 24(109), 23–26. ISSN 0025-5718, 1088-6842, doi:10.1090/S0025-5718-1970-0258249-6.
Nelder JA, Mead R (1965). “A Simplex Method for Function Minimization.” The Computer Journal, 7(4), 308–313. ISSN 0010-4620, doi:10.1093/comjnl/7.4.308.
Shanno DF (1970). “Conditioning of Quasi-Newton Methods for Function Minimization.” Mathematics of Computation, 24(111), 647–656. ISSN 0025-5718, 1088-6842, doi:10.1090/S0025-5718-1970-0274029-X.
See Also
Other optimization functions:
extract_optim_parameters.galamm()
Examples
# Define control object with quite a high degree of verbosity (trace = 6)
# and using the last 20 BFGS updates to estimate the Hessian in L-BFGS-B.
control <- galamm_control(optim_control = list(trace = 6, lmm = 20))