run_tmb {gadget3} | R Documentation |
Gadget3 actions into TMB code
Description
Turn g3 actions into CPP code that can be compiled using TMB
Usage
g3_to_tmb(actions, trace = FALSE, strict = FALSE)
g3_tmb_adfun(cpp_code, parameters = attr(cpp_code, "parameter_template"),
compile_flags =
if (.Platform$OS.type == "windows") c("-O1", "-march=native")
else c("-O3", "-flto", "-march=native"),
work_dir = tempdir(),
output_script = FALSE, ...)
g3_tmb_par(parameters, include_random = TRUE)
g3_tmb_lower(parameters)
g3_tmb_upper(parameters)
g3_tmb_parscale(parameters)
g3_tmb_relist(parameters, par)
Arguments
actions |
A list of actions (i.e. list of formula objects), as produced by g3a_* functions. |
trace |
If TRUE, turn all comments into print statements. |
strict |
If TRUE, enable extra sanity checking in actions. Any invalid conditions (e.g. more/less fish after growth) will result in a warning. |
cpp_code |
cpp_code as produced by g3_to_tmb. |
parameters |
Parameter table as produced by |
par |
Parameter vector, as produced by one of
The first will not include random parameters by default, the others will. |
include_random |
Should random parameters assumed to be part of par? Should be |
compile_flags |
List of extra flags to compile with, use e.g. "-g" to enable debugging output. |
work_dir |
Directory to write and compile .cpp files in. Defaults to R's current temporary directory |
output_script |
If |
... |
Any other options handed directly to MakeADFun |
Details
g3_tmb_adfun
g3_tmb_adfun
will do both the compile and MakeADFun
steps of making a model. If the code is identical to an already-loaded model then it
won't be recompiled, so repeated calls to g3_tmb_adfun to change parameters are fast.
If MakeADFun is crashing your R session, then you can use output_script to run in a separate R session. Use this with gdbsource to debug your model.
Value
g3_to_tmb
A string of C++ code that can be used as an input to g3_tmb_adfun, with the following attributes:
- actions
The original actions list given to the function
- model_data
An environment containing data attached to the model
- parameter_template
A data.frame to be filled in and used as parameters in the other
g3_tmb_*
functions
Use e.g. attr(cpp_code, 'parameter_template')
to retrieve them.
g3_tmb_adfun
An ADFun as produced by TMB's MakeADFun, or location of temporary script if output_script is TRUE
g3_tmb_par
Values extracted from parameters table converted into a vector of values for obj$fn(par)
or nlminb
g3_tmb_lower
Lower bounds extracted from parameters table converted into a vector of values for nlminb
. Random parameters are always excluded
g3_tmb_upper
Lower bounds extracted from parameters table converted into a vector of values for nlminb
. Random parameters are always excluded
g3_tmb_parscale
Parscale extracted from parameters table, converted into a vector of values for nlminb
. Random parameters are always excluded
g3_tmb_relist
The parameters table value column, but with optimised values replaced with contents of par vector. i.e. the inverse operation to g3_tmb_par. par can either include or discount random variables.
Examples
ling_imm <- g3_stock(c(species = 'ling', 'imm'), seq(20, 156, 4)) %>% g3s_age(3, 10)
initialconditions_action <- g3a_initialconditions_normalparam(
ling_imm,
factor_f = g3a_renewal_initabund(by_stock_f = 'species'),
by_stock = 'species',
by_age = TRUE)
abundance_action <- g3l_abundancedistribution(
'abundance',
data.frame(year = 2000:2004, number = 100),
stocks = list(ling_imm),
function_f = g3l_distribution_sumofsquares())
# Timekeeping action
time_action <- g3a_time(
start_year = 2000,
end_year = 2004,
c(3, 3, 3, 3))
# Generate a model from the above 2 actions
# NB: Obviously in reality we'd need more actions
cpp <- g3_to_tmb(list(initialconditions_action, abundance_action, time_action))
if (interactive()) {
# Edit the resulting code
cpp <- edit(cpp)
}
# Set initial conditions for parameters
tmb_param <- attr(cpp, 'parameter_template')
tmb_param$value$project_years <- 0
tmb_param$value$ling.init.F <- 0.4
tmb_param$value$ling.Linf <- 160
tmb_param$value$ling.K <- 90
tmb_param$value$ling.t0 <- 0
tmb_param[grepl('^ling.init.sd.', rownames(tmb_param)), 'value'] <- 50.527220
tmb_param[grepl('^ling_imm.init.\\d+', rownames(tmb_param)), 'value'] <- 1
tmb_param$value$ling_imm.init.scalar <- 200
tmb_param$value$ling_imm.walpha <- 2.27567436711055e-06
tmb_param$value$ling_imm.wbeta <- 3.20200445996187
tmb_param[grepl('\\.M$', rownames(tmb_param)), 'value'] <- 0.15
# We can set lower/upper bounds for multiple properties at once with grepl()
tmb_param[grepl('.', rownames(tmb_param)), 'lower'] <- -1000
tmb_param[grepl('.', rownames(tmb_param)), 'upper'] <- 1000
# parscale gives optim() a relative scale of parameters
tmb_param['parscale'] <- 1
if (!( nzchar(Sys.getenv('GITHUB_CI')) && .Platform$OS.type == "windows" )) {
# Compile to a TMB ADFun
tmb <- g3_tmb_adfun(cpp, tmb_param)
}
# NB: TMB::gdbsource() requires both "R" and "gdb" to be available
# NB: gdbsource hangs on windows - https://github.com/kaskr/adcomp/issues/385
if (all(nzchar(Sys.which(c('gdb', 'R')))) && .Platform$OS.type !="windows") {
cpp_broken <- g3_to_tmb(list(
initialconditions_action,
abundance_action,
g3_formula(quote( stop("This model is broken") )),
time_action))
# Build the model in an isolated R session w/debugger
writeLines(TMB::gdbsource(g3_tmb_adfun(
cpp_broken,
compile_flags = "-g",
output_script = TRUE)))
}
if (!( nzchar(Sys.getenv('GITHUB_CI')) && .Platform$OS.type == "windows" )) {
# Perform a single run, using values in table
result <- tmb$fn(g3_tmb_par(tmb_param))
}
if (!( nzchar(Sys.getenv('GITHUB_CI')) && .Platform$OS.type == "windows" )) {
# perform optimisation using upper/lower/parscale from table
fit <- optim(tmb$par, tmb$fn, tmb$gr,
method = "L-BFGS-B",
upper = g3_tmb_upper(tmb_param),
lower = g3_tmb_lower(tmb_param),
control = list(maxit=10, parscale=g3_tmb_parscale(tmb_param)))
}
if (!( nzchar(Sys.getenv('GITHUB_CI')) && .Platform$OS.type == "windows" )) {
# perform optimisation without bounds
fit <- optim(tmb$par, tmb$fn, tmb$gr)
}
if (!( nzchar(Sys.getenv('GITHUB_CI')) && .Platform$OS.type == "windows" )) {
# Go back to a list of parameters, suitable for the R version
# NB: This will not set the values for random parameters
param_list <- g3_tmb_relist(tmb_param, fit$par)
}
if (!( nzchar(Sys.getenv('GITHUB_CI')) && .Platform$OS.type == "windows" )) {
# Update parameters with values from last run, *including* random parameters.
param_list <- g3_tmb_relist(tmb_param, tmb$env$last.par)
}
if (!( nzchar(Sys.getenv('GITHUB_CI')) && .Platform$OS.type == "windows" )) {
# Rebuild, only including "Fun" (i.e. without auto-differentiation)
# Result will only work for tmb$report
tmb <- g3_tmb_adfun(cpp, tmb_param, type = "Fun")
result <- tmb$report(g3_tmb_par(tmb_param))
}