plotPolytope {gMOIP}R Documentation

Plot the polytope (bounded convex set) of a linear mathematical program (Ax <= b)

Description

This is a wrapper function calling plotPolytope2D() (2D graphics) and plotPolytope3D() (3D graphics).

Usage

plotPolytope(
  A,
  b,
  obj = NULL,
  type = rep("c", ncol(A)),
  nonneg = rep(TRUE, ncol(A)),
  crit = "max",
  faces = type,
  plotFaces = TRUE,
  plotFeasible = TRUE,
  plotOptimum = FALSE,
  latex = FALSE,
  labels = NULL,
  ...
)

Arguments

A

The constraint matrix.

b

Right hand side.

obj

A vector with objective coefficients.

type

A character vector of same length as number of variables. If entry k is 'i' variable k must be integer and if 'c' continuous.

nonneg

A boolean vector of same length as number of variables. If entry k is TRUE then variable k must be non-negative.

crit

Either max or min (only used if add the iso-profit line)

faces

A character vector of same length as number of variables. If entry k is 'i' variable k must be integer and if 'c' continuous. Useful if e.g. want to show the linear relaxation of an IP.

plotFaces

If True then plot the faces.

plotFeasible

If True then plot the feasible points/segments (relevant for IPLP/MILP).

plotOptimum

Show the optimum corner solution point (if alternative solutions only one is shown) and add the iso-profit line.

latex

If True make latex math labels for TikZ.

labels

If NULL don't add any labels. If 'n' no labels but show the points. If equal coord add coordinates to the points. Otherwise number all points from one.

...

If 2D, further arguments passed on the the ggplot plotting functions. This must be done as lists. Currently the following arguments are supported:

If 3D further arguments passed on the the RGL plotting functions. This must be done as lists. Currently the following arguments are supported:

  • argsAxes3d: A list of arguments for rgl::axes3d.

  • argsPlot3d: A list of arguments for rgl::plot3d to open the RGL window.

  • argsTitle3d: A list of arguments for rgl::title3d.

  • argsFaces: A list of arguments for plotHull3D.

  • argsFeasible: A list of arguments for RGL functions:

  • argsLabels: A list of arguments for RGL functions:

  • argsOptimum: A list of arguments for RGL functions:

Value

If 2D a ggplot object. If 3D a RGL window with the 3D plot.

Note

The feasible region defined by the constraints must be bounded (i.e. no extreme rays) otherwise you may see strange results.

Author(s)

Lars Relund lars@relund.dk

Examples

#### 2D examples ####
# Define the model max/min coeff*x st. Ax<=b, x>=0
A <- matrix(c(-3,2,2,4,9,10), ncol = 2, byrow = TRUE)
b <- c(3,27,90)
obj <- c(7.75, 10)

## LP model
# The polytope with the corner points
plotPolytope(
   A,
   b,
   obj,
   type = rep("c", ncol(A)),
   crit = "max",
   faces = rep("c", ncol(A)),
   plotFaces = TRUE,
   plotFeasible = TRUE,
   plotOptimum = FALSE,
   labels = NULL,
   argsFaces = list(argsGeom_polygon = list(fill = "red"))
)
# With optimum and labels:
plotPolytope(
   A,
   b,
   obj,
   type = rep("c", ncol(A)),
   crit = "max",
   faces = rep("c", ncol(A)),
   plotFaces = TRUE,
   plotFeasible = TRUE,
   plotOptimum = TRUE,
   labels = "coord",
   argsOptimum = list(lty="solid")
)
# Minimize:
plotPolytope(
   A,
   b,
   obj,
   type = rep("c", ncol(A)),
   crit = "min",
   faces = rep("c", ncol(A)),
   plotFaces = TRUE,
   plotFeasible = TRUE,
   plotOptimum = TRUE,
   labels = "n"
)
# Note return a ggplot so can e.g. add other labels on e.g. the axes:
p <- plotPolytope(
   A,
   b,
   obj,
   type = rep("c", ncol(A)),
   crit = "max",
   faces = rep("c", ncol(A)),
   plotFaces = TRUE,
   plotFeasible = TRUE,
   plotOptimum = TRUE,
   labels = "coord"
)
p + ggplot2::xlab("x") + ggplot2::ylab("y")

# More examples

## LP-model with no non-negativity constraints
A <- matrix(c(-3, 2, 2, 4, 9, 10, 1, -2), ncol = 2, byrow = TRUE)
b <- c(3, 27, 90, 2)
obj <- c(7.75, 10)
plotPolytope(
   A,
   b,
   obj,
   type = rep("c", ncol(A)),
   nonneg = rep(FALSE, ncol(A)),
   crit = "max",
   faces = rep("c", ncol(A)),
   plotFaces = TRUE,
   plotFeasible = TRUE,
   plotOptimum = FALSE,
   labels = NULL
)



## The package don't plot feasible regions that are unbounded e.g if we drop the 2 and 3 constraint
A <- matrix(c(-3,2), ncol = 2, byrow = TRUE)
b <- c(3)
obj <- c(7.75, 10)
# Wrong plot
plotPolytope(
   A,
   b,
   obj,
   type = rep("c", ncol(A)),
   crit = "max",
   faces = rep("c", ncol(A)),
   plotFaces = TRUE,
   plotFeasible = TRUE,
   plotOptimum = FALSE,
   labels = NULL
)
# One solution is to add a bounding box and check if the bounding box is binding
A <- rbind(A, c(1,0), c(0,1))
b <- c(b, 10, 10)
plotPolytope(
   A,
   b,
   obj,
   type = rep("c", ncol(A)),
   crit = "max",
   faces = rep("c", ncol(A)),
   plotFaces = TRUE,
   plotFeasible = TRUE,
   plotOptimum = FALSE,
   labels = NULL
)


## ILP model
A <- matrix(c(-3,2,2,4,9,10), ncol = 2, byrow = TRUE)
b <- c(3,27,90)
obj <- c(7.75, 10)
# ILP model with LP faces:
plotPolytope(
   A,
   b,
   obj,
   type = rep("i", ncol(A)),
   crit = "max",
   faces = rep("c", ncol(A)),
   plotFaces = TRUE,
   plotFeasible = TRUE,
   plotOptimum = TRUE,
   labels = "coord",
   argsLabels = list(size = 4, color = "blue"),
   argsFeasible = list(color = "red", size = 3)
)
#ILP model with IP faces:
plotPolytope(
   A,
   b,
   obj,
   type = rep("i", ncol(A)),
   crit = "max",
   faces = rep("i", ncol(A)),
   plotFaces = TRUE,
   plotFeasible = TRUE,
   plotOptimum = TRUE,
   labels = "coord"
)


## MILP model
A <- matrix(c(-3,2,2,4,9,10), ncol = 2, byrow = TRUE)
b <- c(3,27,90)
obj <- c(7.75, 10)
# Second coordinate integer
plotPolytope(
   A,
   b,
   obj,
   type = c("c", "i"),
   crit = "max",
   faces = c("c", "i"),
   plotFaces = FALSE,
   plotFeasible = TRUE,
   plotOptimum = TRUE,
   labels = "coord",
   argsFeasible = list(color = "red")
)
# First coordinate integer and with LP faces:
plotPolytope(
   A,
   b,
   obj,
   type = c("i", "c"),
   crit = "max",
   faces = c("c", "c"),
   plotFaces = TRUE,
   plotFeasible = TRUE,
   plotOptimum = TRUE,
   labels = "coord"
)
# First coordinate integer and with LP faces:
plotPolytope(
   A,
   b,
   obj,
   type = c("i", "c"),
   crit = "max",
   faces = c("i", "c"),
   plotFaces = TRUE,
   plotFeasible = TRUE,
   plotOptimum = TRUE,
   labels = "coord"
)




#### 3D examples ####

# Ex 1
view <- matrix( c(-0.412063330411911, -0.228006735444069, 0.882166087627411, 0, 0.910147845745087,
                  -0.0574885793030262, 0.410274744033813, 0, -0.042830865830183, 0.97196090221405,
                  0.231208890676498, 0, 0, 0, 0, 1), nc = 4)
loadView(v = view)
A <- matrix( c(
   3, 2, 5,
   2, 1, 1,
   1, 1, 3,
   5, 2, 4
), nc = 3, byrow = TRUE)
b <- c(55, 26, 30, 57)
obj <- c(20, 10, 15)
# LP model
plotPolytope(A, b, plotOptimum = TRUE, obj = obj, labels = "coord")
plotPolytope(A, b, plotOptimum = TRUE, obj = obj, labels = "coord",
             argsFaces = list(drawLines = FALSE, argsPolygon3d = list(alpha = 0.95)),
             argsLabels = list(points3d = list(color = "blue")))
# ILP model
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","i","i"), plotOptimum = TRUE, obj = obj)
# MILP model
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","c","i"), plotOptimum = TRUE, obj = obj)
plotPolytope(A, b, faces = c("c","c","c"), type = c("c","i","i"), plotOptimum = TRUE, obj = obj)
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","i","c"), plotOptimum = TRUE, obj = obj)
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","i","c"), plotFaces = FALSE)
plotPolytope(A, b, type = c("i","c","c"), plotOptimum = TRUE, obj = obj, plotFaces = FALSE)
plotPolytope(A, b, type = c("c","i","c"), plotOptimum = TRUE, obj = obj, plotFaces = FALSE)
plotPolytope(A, b, type = c("c","c","i"), plotOptimum = TRUE, obj = obj, plotFaces = FALSE)

# Ex 2
view <- matrix( c(-0.812462985515594, -0.029454167932272, 0.582268416881561, 0, 0.579295456409454,
                  -0.153386667370796, 0.800555109977722, 0, 0.0657325685024261, 0.987727105617523,
                  0.14168381690979, 0, 0, 0, 0, 1), nc = 4)
loadView(v = view)
A <- matrix( c(
   1, 1, 1,
   3, 0, 1
), nc = 3, byrow = TRUE)
b <- c(10, 24)
obj <- c(20, 10, 15)
plotPolytope(A, b, plotOptimum = TRUE, obj = obj, labels = "coord")
# ILP model
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","i","i"), plotOptimum = TRUE, obj = obj)
# MILP model
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","c","i"), plotOptimum = TRUE, obj = obj)
plotPolytope(A, b, faces = c("c","c","c"), type = c("c","i","i"), plotOptimum = TRUE, obj = obj)
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","i","c"), plotOptimum = TRUE, obj = obj)
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","i","c"), plotFaces = FALSE)
plotPolytope(A, b, type = c("i","c","c"), plotOptimum = TRUE, obj = obj, plotFaces = FALSE)
plotPolytope(A, b, type = c("c","i","c"), plotOptimum = TRUE, obj = obj, plotFaces = FALSE)
plotPolytope(A, b, type = c("c","c","i"), plotOptimum = TRUE, obj = obj, plotFaces = FALSE)

# Ex 3
view <- matrix( c(0.976349174976349, -0.202332556247711, 0.0761845782399178, 0, 0.0903248339891434,
                  0.701892614364624, 0.706531345844269, 0, -0.196427255868912, -0.682940244674683,
                  0.703568696975708, 0, 0, 0, 0, 1), nc = 4)
loadView(v = view)
A <- matrix( c(
   -1, 1, 0,
   1, 4, 0,
   2, 1, 0,
   3, -4, 0,
   0, 0, 4
), nc = 3, byrow = TRUE)
b <- c(5, 45, 27, 24, 10)
obj <- c(5, 45, 15)
plotPolytope(A, b, plotOptimum = TRUE, obj = obj, labels = "coord")
# ILP model
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","i","i"), plotOptimum = TRUE, obj = obj)
# MILP model
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","c","i"), plotOptimum = TRUE, obj = obj)
plotPolytope(A, b, faces = c("c","c","c"), type = c("c","i","i"), plotOptimum = TRUE, obj = obj)
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","i","c"), plotOptimum = TRUE, obj = obj)
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","i","c"), plotFaces = FALSE)
plotPolytope(A, b, type = c("i","c","c"), plotOptimum = TRUE, obj = obj, plotFaces = FALSE)
plotPolytope(A, b, type = c("c","i","c"), plotOptimum = TRUE, obj = obj, plotFaces = FALSE)
plotPolytope(A, b, type = c("c","c","i"), plotOptimum = TRUE, obj = obj, plotFaces = FALSE)

# Ex 4
view <- matrix( c(-0.452365815639496, -0.446501553058624, 0.77201122045517, 0, 0.886364221572876,
                  -0.320795893669128, 0.333835482597351, 0, 0.0986008867621422, 0.835299551486969,
                  0.540881276130676, 0, 0, 0, 0, 1), nc = 4)
loadView(v = view)
Ab <- matrix( c(
   1, 1, 2, 5,
   2, -1, 0, 3,
   -1, 2, 1, 3,
   0, -3, 5, 2
   #   0, 1, 0, 4,
   #   1, 0, 0, 4
), nc = 4, byrow = TRUE)
A <- Ab[,1:3]
b <- Ab[,4]
obj = c(1,1,3)
plotPolytope(A, b, plotOptimum = TRUE, obj = obj, labels = "coord")
# ILP model
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","i","i"), plotOptimum = TRUE, obj = obj)
# MILP model
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","c","i"), plotOptimum = TRUE, obj = obj)
plotPolytope(A, b, faces = c("c","c","c"), type = c("c","i","i"), plotOptimum = TRUE, obj = obj)
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","i","c"), plotOptimum = TRUE, obj = obj)
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","i","c"), plotFaces = FALSE)
plotPolytope(A, b, type = c("i","c","c"), plotOptimum = TRUE, obj = obj, plotFaces = FALSE)
plotPolytope(A, b, type = c("c","i","c"), plotOptimum = TRUE, obj = obj, plotFaces = FALSE)
plotPolytope(A, b, faces = c("c","c","c"), type = c("c","c","i"), plotOptimum = TRUE, obj = obj)


[Package gMOIP version 1.5.2 Index]