plotPolytope {gMOIP} | R Documentation |
Plot the polytope (bounded convex set) of a linear mathematical program (Ax <= b)
Description
This is a wrapper function calling plotPolytope2D()
(2D graphics) and
plotPolytope3D()
(3D graphics).
Usage
plotPolytope(
A,
b,
obj = NULL,
type = rep("c", ncol(A)),
nonneg = rep(TRUE, ncol(A)),
crit = "max",
faces = type,
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = FALSE,
latex = FALSE,
labels = NULL,
...
)
Arguments
A |
The constraint matrix. |
b |
Right hand side. |
obj |
A vector with objective coefficients. |
type |
A character vector of same length as number of variables. If
entry k is 'i' variable |
nonneg |
A boolean vector of same length as number of variables. If entry k is TRUE then variable k must be non-negative. |
crit |
Either max or min (only used if add the iso-profit line) |
faces |
A character vector of same length as number of variables. If
entry k is 'i' variable |
plotFaces |
If |
plotFeasible |
If |
plotOptimum |
Show the optimum corner solution point (if alternative solutions only one is shown) and add the iso-profit line. |
latex |
If |
labels |
If |
... |
If 2D, further arguments passed on the the
If 3D further arguments passed on the the RGL plotting functions. This must be done as lists. Currently the following arguments are supported:
|
Value
If 2D a ggplot
object. If 3D a RGL window with the 3D plot.
Note
The feasible region defined by the constraints must be bounded (i.e. no extreme rays) otherwise you may see strange results.
Author(s)
Lars Relund lars@relund.dk
Examples
#### 2D examples ####
# Define the model max/min coeff*x st. Ax<=b, x>=0
A <- matrix(c(-3,2,2,4,9,10), ncol = 2, byrow = TRUE)
b <- c(3,27,90)
obj <- c(7.75, 10)
## LP model
# The polytope with the corner points
plotPolytope(
A,
b,
obj,
type = rep("c", ncol(A)),
crit = "max",
faces = rep("c", ncol(A)),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = FALSE,
labels = NULL,
argsFaces = list(argsGeom_polygon = list(fill = "red"))
)
# With optimum and labels:
plotPolytope(
A,
b,
obj,
type = rep("c", ncol(A)),
crit = "max",
faces = rep("c", ncol(A)),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = TRUE,
labels = "coord",
argsOptimum = list(lty="solid")
)
# Minimize:
plotPolytope(
A,
b,
obj,
type = rep("c", ncol(A)),
crit = "min",
faces = rep("c", ncol(A)),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = TRUE,
labels = "n"
)
# Note return a ggplot so can e.g. add other labels on e.g. the axes:
p <- plotPolytope(
A,
b,
obj,
type = rep("c", ncol(A)),
crit = "max",
faces = rep("c", ncol(A)),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = TRUE,
labels = "coord"
)
p + ggplot2::xlab("x") + ggplot2::ylab("y")
# More examples
## LP-model with no non-negativity constraints
A <- matrix(c(-3, 2, 2, 4, 9, 10, 1, -2), ncol = 2, byrow = TRUE)
b <- c(3, 27, 90, 2)
obj <- c(7.75, 10)
plotPolytope(
A,
b,
obj,
type = rep("c", ncol(A)),
nonneg = rep(FALSE, ncol(A)),
crit = "max",
faces = rep("c", ncol(A)),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = FALSE,
labels = NULL
)
## The package don't plot feasible regions that are unbounded e.g if we drop the 2 and 3 constraint
A <- matrix(c(-3,2), ncol = 2, byrow = TRUE)
b <- c(3)
obj <- c(7.75, 10)
# Wrong plot
plotPolytope(
A,
b,
obj,
type = rep("c", ncol(A)),
crit = "max",
faces = rep("c", ncol(A)),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = FALSE,
labels = NULL
)
# One solution is to add a bounding box and check if the bounding box is binding
A <- rbind(A, c(1,0), c(0,1))
b <- c(b, 10, 10)
plotPolytope(
A,
b,
obj,
type = rep("c", ncol(A)),
crit = "max",
faces = rep("c", ncol(A)),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = FALSE,
labels = NULL
)
## ILP model
A <- matrix(c(-3,2,2,4,9,10), ncol = 2, byrow = TRUE)
b <- c(3,27,90)
obj <- c(7.75, 10)
# ILP model with LP faces:
plotPolytope(
A,
b,
obj,
type = rep("i", ncol(A)),
crit = "max",
faces = rep("c", ncol(A)),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = TRUE,
labels = "coord",
argsLabels = list(size = 4, color = "blue"),
argsFeasible = list(color = "red", size = 3)
)
#ILP model with IP faces:
plotPolytope(
A,
b,
obj,
type = rep("i", ncol(A)),
crit = "max",
faces = rep("i", ncol(A)),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = TRUE,
labels = "coord"
)
## MILP model
A <- matrix(c(-3,2,2,4,9,10), ncol = 2, byrow = TRUE)
b <- c(3,27,90)
obj <- c(7.75, 10)
# Second coordinate integer
plotPolytope(
A,
b,
obj,
type = c("c", "i"),
crit = "max",
faces = c("c", "i"),
plotFaces = FALSE,
plotFeasible = TRUE,
plotOptimum = TRUE,
labels = "coord",
argsFeasible = list(color = "red")
)
# First coordinate integer and with LP faces:
plotPolytope(
A,
b,
obj,
type = c("i", "c"),
crit = "max",
faces = c("c", "c"),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = TRUE,
labels = "coord"
)
# First coordinate integer and with LP faces:
plotPolytope(
A,
b,
obj,
type = c("i", "c"),
crit = "max",
faces = c("i", "c"),
plotFaces = TRUE,
plotFeasible = TRUE,
plotOptimum = TRUE,
labels = "coord"
)
#### 3D examples ####
# Ex 1
view <- matrix( c(-0.412063330411911, -0.228006735444069, 0.882166087627411, 0, 0.910147845745087,
-0.0574885793030262, 0.410274744033813, 0, -0.042830865830183, 0.97196090221405,
0.231208890676498, 0, 0, 0, 0, 1), nc = 4)
loadView(v = view)
A <- matrix( c(
3, 2, 5,
2, 1, 1,
1, 1, 3,
5, 2, 4
), nc = 3, byrow = TRUE)
b <- c(55, 26, 30, 57)
obj <- c(20, 10, 15)
# LP model
plotPolytope(A, b, plotOptimum = TRUE, obj = obj, labels = "coord")
plotPolytope(A, b, plotOptimum = TRUE, obj = obj, labels = "coord",
argsFaces = list(drawLines = FALSE, argsPolygon3d = list(alpha = 0.95)),
argsLabels = list(points3d = list(color = "blue")))
# ILP model
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","i","i"), plotOptimum = TRUE, obj = obj)
# MILP model
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","c","i"), plotOptimum = TRUE, obj = obj)
plotPolytope(A, b, faces = c("c","c","c"), type = c("c","i","i"), plotOptimum = TRUE, obj = obj)
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","i","c"), plotOptimum = TRUE, obj = obj)
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","i","c"), plotFaces = FALSE)
plotPolytope(A, b, type = c("i","c","c"), plotOptimum = TRUE, obj = obj, plotFaces = FALSE)
plotPolytope(A, b, type = c("c","i","c"), plotOptimum = TRUE, obj = obj, plotFaces = FALSE)
plotPolytope(A, b, type = c("c","c","i"), plotOptimum = TRUE, obj = obj, plotFaces = FALSE)
# Ex 2
view <- matrix( c(-0.812462985515594, -0.029454167932272, 0.582268416881561, 0, 0.579295456409454,
-0.153386667370796, 0.800555109977722, 0, 0.0657325685024261, 0.987727105617523,
0.14168381690979, 0, 0, 0, 0, 1), nc = 4)
loadView(v = view)
A <- matrix( c(
1, 1, 1,
3, 0, 1
), nc = 3, byrow = TRUE)
b <- c(10, 24)
obj <- c(20, 10, 15)
plotPolytope(A, b, plotOptimum = TRUE, obj = obj, labels = "coord")
# ILP model
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","i","i"), plotOptimum = TRUE, obj = obj)
# MILP model
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","c","i"), plotOptimum = TRUE, obj = obj)
plotPolytope(A, b, faces = c("c","c","c"), type = c("c","i","i"), plotOptimum = TRUE, obj = obj)
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","i","c"), plotOptimum = TRUE, obj = obj)
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","i","c"), plotFaces = FALSE)
plotPolytope(A, b, type = c("i","c","c"), plotOptimum = TRUE, obj = obj, plotFaces = FALSE)
plotPolytope(A, b, type = c("c","i","c"), plotOptimum = TRUE, obj = obj, plotFaces = FALSE)
plotPolytope(A, b, type = c("c","c","i"), plotOptimum = TRUE, obj = obj, plotFaces = FALSE)
# Ex 3
view <- matrix( c(0.976349174976349, -0.202332556247711, 0.0761845782399178, 0, 0.0903248339891434,
0.701892614364624, 0.706531345844269, 0, -0.196427255868912, -0.682940244674683,
0.703568696975708, 0, 0, 0, 0, 1), nc = 4)
loadView(v = view)
A <- matrix( c(
-1, 1, 0,
1, 4, 0,
2, 1, 0,
3, -4, 0,
0, 0, 4
), nc = 3, byrow = TRUE)
b <- c(5, 45, 27, 24, 10)
obj <- c(5, 45, 15)
plotPolytope(A, b, plotOptimum = TRUE, obj = obj, labels = "coord")
# ILP model
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","i","i"), plotOptimum = TRUE, obj = obj)
# MILP model
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","c","i"), plotOptimum = TRUE, obj = obj)
plotPolytope(A, b, faces = c("c","c","c"), type = c("c","i","i"), plotOptimum = TRUE, obj = obj)
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","i","c"), plotOptimum = TRUE, obj = obj)
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","i","c"), plotFaces = FALSE)
plotPolytope(A, b, type = c("i","c","c"), plotOptimum = TRUE, obj = obj, plotFaces = FALSE)
plotPolytope(A, b, type = c("c","i","c"), plotOptimum = TRUE, obj = obj, plotFaces = FALSE)
plotPolytope(A, b, type = c("c","c","i"), plotOptimum = TRUE, obj = obj, plotFaces = FALSE)
# Ex 4
view <- matrix( c(-0.452365815639496, -0.446501553058624, 0.77201122045517, 0, 0.886364221572876,
-0.320795893669128, 0.333835482597351, 0, 0.0986008867621422, 0.835299551486969,
0.540881276130676, 0, 0, 0, 0, 1), nc = 4)
loadView(v = view)
Ab <- matrix( c(
1, 1, 2, 5,
2, -1, 0, 3,
-1, 2, 1, 3,
0, -3, 5, 2
# 0, 1, 0, 4,
# 1, 0, 0, 4
), nc = 4, byrow = TRUE)
A <- Ab[,1:3]
b <- Ab[,4]
obj = c(1,1,3)
plotPolytope(A, b, plotOptimum = TRUE, obj = obj, labels = "coord")
# ILP model
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","i","i"), plotOptimum = TRUE, obj = obj)
# MILP model
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","c","i"), plotOptimum = TRUE, obj = obj)
plotPolytope(A, b, faces = c("c","c","c"), type = c("c","i","i"), plotOptimum = TRUE, obj = obj)
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","i","c"), plotOptimum = TRUE, obj = obj)
plotPolytope(A, b, faces = c("c","c","c"), type = c("i","i","c"), plotFaces = FALSE)
plotPolytope(A, b, type = c("i","c","c"), plotOptimum = TRUE, obj = obj, plotFaces = FALSE)
plotPolytope(A, b, type = c("c","i","c"), plotOptimum = TRUE, obj = obj, plotFaces = FALSE)
plotPolytope(A, b, faces = c("c","c","c"), type = c("c","c","i"), plotOptimum = TRUE, obj = obj)