simConfint {gMCP} | R Documentation |
Simultaneous confidence intervals for sequentially rejective multiple test procedures
Description
Calculates simultaneous confidence intervals for sequentially rejective multiple test procedures.
Usage
simConfint(object, pvalues, confint, alternative=c("less", "greater"),
estimates, df, alpha=0.05, mu=0)
Arguments
object |
A graph of class |
pvalues |
A numeric vector specifying the p-values for the sequentially rejective MTP. |
confint |
One of the following:
A character string |
alternative |
A character string specifying the alternative hypothesis, must be "greater" or "less". |
estimates |
Point estimates for the parameters of interest. |
df |
Degree of freedom as numeric. |
alpha |
The overall alpha level as numeric scalar. |
mu |
The numerical parameter vector under null hypothesis. |
Details
For details see the given references.
Value
A matrix with columns giving lower confidence limits, point estimates and upper confidence limits for each parameter. These will be labeled as "lower bound", "estimate" and "upper bound".
Author(s)
Kornelius Rohmeyer rohmeyer@small-projects.de
References
Frank Bretz, Willi Maurer, Werner Brannath, Martin Posch: A graphical approach to sequentially rejective multiple test procedures. Statistics in Medicine 2009 vol. 28 issue 4 page 586-604. http://www.meduniwien.ac.at/fwf_adaptive/papers/bretz_2009_22.pdf
See Also
Examples
est <- c("H1"=0.860382, "H2"=0.9161474, "H3"=0.9732953)
# Sample standard deviations:
ssd <- c("H1"=0.8759528, "H2"=1.291310, "H3"=0.8570892)
pval <- c(0.01260, 0.05154, 0.02124)/2
simConfint(BonferroniHolm(3), pvalues=pval,
confint=function(node, alpha) {
c(est[node]-qt(1-alpha,df=9)*ssd[node]/sqrt(10), Inf)
}, estimates=est, alpha=0.025, mu=0, alternative="greater")
# Note that the sample standard deviations in the following call
# will be calculated from the pvalues and estimates.
ci <- simConfint(BonferroniHolm(3), pvalues=pval,
confint="t", df=9, estimates=est, alpha=0.025, alternative="greater")
ci
plotSimCI(ci)